iy rn-.r..‘h




Counting and Counters

R. M. M. Oberman

Professor in Information Engineering
Technical University

Delft, The Netherlands



© R. M. M. Oberman 1981

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1981 by

THE MACMILLAN PRESS LTD

London and Basingstoke

Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Typeset in 10/12 Press Roman by
STYLESET LIMITED

Salisbury - Wiltshire
and printed in Hong Kong

ISBN 0 333 30512 4

This book is sold subject to the standard conditions of the Net Book Agreement.



Counting and Counters



Counting starts with zero and not with one



Preface

During the forty yearsin which the design of switching circuits has been increasingly
developed as a science, the design of counters has, in my experience, always been
an excellent proving ground for anyone who has mastered Boolean algebra for the
design of gate circuits and has acquired some knowledge of the design of sequential
circuits that perform shifting and counting operations.

Counters are sequential circuits with a well-defined basic operation. They can
be designed through an operating algorism or a system description; equally, they
can be designed using operating tables and Karnaugh maps, from which the final
switching equations are derived.

Both methods are demonstrated in the text. However, the design method using
algorisms or system concepts has been given preference because in the author’s
opinion this method provides the designer with the best insight into what he is
really doing.

This book is intended to be used at the graduate level of study in digital elec-
tronics. Counting has always been and will always be an important operation in any
automated technical system or organisation. It is therefore an important tool for
the education of students in the science of digital techniques. A knowledge of
counters is not only important in itself, it is even more important from the point
of view of the insight it provides into the solution of switching problems.

A number of the counter designs discussed in the text have been used as student
projects which could be carried out instead of a formal examination. The results
of this type of student assessment have been extremely good.

The foregoing remarks about the scope of this book might give the impression
that it is intended for teaching purposes only, but this is not so. The book contains
more material than should be taught in a single course. Many different types of
counting problem, a number of which are published for the first time, have been
treated; thus the text will also be useful for many people working on the design of
switching circuits. They will need this book as a reference and an explanation of the
operation of commercially available counter circuits in integrated form. There are
many different types of counter since counting is a part of almost every type of
switching circuit.



xii PREFACE

In this book the concept of counting is treated very broadly. The author considers
any circuit running through a cycle of states to be a counter. Its output may have a
clear and well-defined relationship with the number of input pulses, but this relation-
ship can also have a pseudo-random character, equally well-defined, but very
difficult to state in the form of mathematical equations.

The author wishes to thank his colleagues A. J. van de Goor and A. Snijders for
their careful reading of the manuscript and his laboratory staff for testing many of
the counter circuits included in the text.

R. M. M. OBERMAN



Contents

Preface

. Counting with Numbers
1.0 Number Systems
1.1 Polynomial Number Representation
Factorial representation
Combinatorial representation
Modular representation
1.2 Some Extensions of the Polynomial Representation
The signed-digit number system
The reflected binary number system
1.3 Weight Concepts
1.4 Number Systems with Error-detecting Power
1.5 Number Systems with Error-correcting Power
1.6 Counting Algorisms
1.7 High-speed Counting
References

. Binary Counters
2.0 Introduction )
2.1 Binary Counters using T Flip-flops as Switching Elements
2.2 Circuit Design via Karnaugh Maps ~ ~
2.3 The Features of the Counter
The flip-flop type
- Load and clear functions
The carry problem
2.4 Special Forms of Binary Counter
Binary—decimal counters
Up—down counters
2.5 Counters with Error-detecting and Error-correcting Power
Binary counters with single error-detection
Binary counters with single error-correction

0N W N = — .

[ e )
AN W= O

17
17
20
23
25
25
26
28
29
29
34
36
36
38



viii CONTENTS

2.6 The Binary Rate Multiplier 41
2.7 Some Variations on Binary Counters 43
Binary counter with variable starting section 43
Divide-by-N counters 44
Negabinary counter 47

2.8 Interference-resistant Binary Counter 47
2.9 High-speed Counting 49
References 50
3. Reflected Binary Counters 51
3.0 Introduction 51
3.1 The Design of a 4-bit Synchronous Reflected Binary Counter 54
3.2 The Design of a Combined Reflected Binary, Signed-digit and 60

Natural Binary Counter

3.3 The Design of a Reflected Binary Decimal Counter 61
Decimal up—down counter 63

3.4 Single Error-correcting Reflected Binary Counter 63
The detection of the number of the erroneous bit 66

The error-correction 67
References 69
4. Constant-ratio Counters 70
4.0 Introduction 71
4.1 Constant-ratio Codes with the Words in Non-lexicographic Order 71
Characterisation of essential code words 75

4.2 The Generation of a Complete Cycle of Code Words 78
The jump detection 78

4.3 The Design of Jumping Diagrams for Codes with M = 4 83
4.4 Constant-ratio Codes with a Word Sequence in Lexicographic Order 87
4.5 Constant-ratio Code Counters, Lexicographic Order 89
Counter consisting of N J-K flip-flops 92

4.6 Constant-ratio Bar Codes 96
References 99
5. Accumulative Counters 100
5.0 Introduction 100
5.1 Decimal Counters 101
5.2 The Rate Multiplier—Accumulator 106
Arbitrary rate multiplier, fixed rate 109
Programmable arbitrary rate multiplier 110
References 111
6. Shift Register Counters 112
6.0 Introduction 112
6.1 Linear Counters 112

Interference-resistant linear counter 114



CONTENTS ix

6.2 Transmitters and Receivers of Binary Information 115
The transmitter 116
6.3 The Linear Counter with a Number of 1 Bits 117
6.4 Shift Register Counters with Inverted Feedback 118
6.5 Shift Registers as Prescalers 121
References 124
7. Pseudo-random Sequence Generators 125
7.0 Introduction 125
7.1 The m Sequence Generator 127
7.2 Composite Pseudo-random Sequence Generator 133
Calculation of the number of wheel revolutions 136

The wheels
7.3 Pseudo-random Decimal Number Generator 141
References 143
8. Function Counters 145
8.0 Introduction 145
8.1 N," Counters 145
8.2 /N4 Counters 149
8.3 Log, N4 Counter 153
8.4 1/N4 Counter 155
8.5 Sin—Cos Generator 159
Increment-difference sin a counter 161
8.6 The Fibonacci Sequence Generator 162
Reference 164
9. Gateless Synchronous Counters with J-K Flip-flops 165
9.0 Introduction 165
9.1 Gateless Counters with J-K Flip-flops having Multiple Inputs 167
9.2 Gateless Counting Shift Registers with J-K Flip-flops 168
References 169

Index 170



1 Counting with Numbers

1.0 NUMBER SYSTEMS

The concept of counting has a very wide field of application in mathematics. In this
text, however, the concept of counting will be restricted to the rather narrow field
of counting with numbers in a number system.[1]

This type of counting is a step-by-step procedure by means of which all numbers
in a number system can be obtained sequentially in the order of ever increasing
value. There are two fundamental requirements for the numbers in these systems

(i) Spaces are not allowed between two successive numbers.
(ii) Different representations of the same number are not allowed.

In ordinary number systems, numbers are represented by a group of digits, each
having a weight according to the radix of that system. The most well known number
systems are the decimal number system for manual use, and the binary system for
machine use, having bases of 10 and 2 respectively.

Each number in these systems can be represented by a polynomial of the weights
of the various digits

A=8pnb™ +am_1B™ ' + .. +azb® +ayb' +aob® (1.1)

In equation 1.1 4 is the number to be represented in a number system with base
b. The digits have the following range

€{o,1,...,(6 -1} (1.2)

This means that the ten digits of the decimal number system range from O to 9
inclusive. The most significant digit is always 1 smaller than the base of the number
system. This leads to only two digits O and 1 in the binary number system. These
features are necessary to ensure uniqueness of the numbers in the number system.

Note that the polynomial number representation of equation 1.1 is written in
such a way that it conforms to the usual number representation with the most
significant digit placed left. In mathematical texts the polynomials are usually
written in the reverse order.



2 COUNTING AND COUNTERS
1.1 POLYNOMIAL NUMBER REPRESENTATION

Equation 1.1 can be written in short-hand notation as follows

m n
A=Y a, I1 o (1.3)
n=0 k=1

witha, €40,1,...,(bn — 1)} and bg = b.

This definition (and also, of course, equation 1.1) leads to the following poly-
nomial representation of binary numbers

A=y 2" 4am_ 2"Vt tay s 2% 4ay 2 4402 (1.4)

The text in the following chapters will be concerned mainly with counter circuits
consisting of bistable elements so that the counter contents can be described in
terms of binary numbers.

Example
75610 =1011110100=1-2° +0-2% + 1-27 + 1-2° + 1-25 + 1:2% + 023
+1-22 +0-2" +0-2°

The uniqueness of the binary number system follows from its definition and that
follows easily from the following equation

12"+ 2" = 22" = 122" 402" ! (1.5)

The addition of 1 to a certain 1 digit of equal weight yields a 0 digit for that weight
and a carry digit 1 to the next more significant digit place.

The addition of 1 to a certain number and its consequences are extremely
important since this is the fundamental counting operation by means of which the
successor of number N, being N + 1, is determined. Counters of this type operate
according the following basic algorism

Niz1 =N; £ 1 (1.6)

In general, the counting increment can be positive or negative, giving respectively
up- and down-counting. Moreover the increment or decrement need not always be 1.
It can be a constant integer, or even a variable integer. The digits in the numbers
are then still binary variables, but their weight may no longer be a power of two.

Factorial representation

A variation on the polynomial representation as defined by equation 1.3 is the
factorial number representation with

4, €{0,1,...,(bx — D}and by =k (1.7)
The resulting number representation is as follows

A=y by Yam_1 b1 +.. . Yay 2! +a; + 1! (1.8)
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Digits @; in the factorial number representation with by = k have no constant range
as have digits a; in the ordinary polynomial representation with bx = b.

Example

ne aza, a;

0 000 = 0:-3!+0-2!+0-1!
1 001 = 0:3/+0-2!+1-1!
2 010 = 0:3'+1-2!+0-1!
3 01 1 = 0-3/+1-2!+1.1!
4 020 = 0:3!/'+2:2'+0-1!
5 021 = 0:3!'+2-2!+1-1!
6 100 = 1-3!/'+0-2!'+0-1!
7 101 = 1-3!+0-21+1-1!
8 1 10 = 13/ +1-2! 4+0-1!
9 11 1 = 1:31+1-21+1-1!

It is a fact in factorial number representations, just as in the polynomial number
representation, that if all the digits of a number have reached the maximum of their
range, the sum of these digits plus 1 must yield the weight of the next more signifi-
cant digit. The proof of this statement is as follows.

Consider a number with p digits

{p-p!+(p_1)-(p—1)z+...3-3!+2-2!+1-1!}+1=(p+1)!(1.9)
{p-pltp!—@—-1)+@E -1 —(p-2)+...+41 —31+31 -2
20— +1=(p+1)pl=(p+1)! Q.ED. (1.10)

Code conversion of numbers in the polynomial representation into numbers with
factorial representation and vice versa is not difficult. The only difference is the
fact that the variable radix of the various digits has to be taken into account.

Combinatorial representation
Numbers in this representation are determined by the following equation
(%N .+ [(B) + (%) + (¥
A-(p) (3 5 ; (1.11)
with the condition that

ap>...>a3>a2>a1>0 (].]2)

The usual short-hand notation can also be applied to numbers in the combinatorial
representation.

(9 6 1\
100 = (3)+ (2>+ (;) =84+15+1

Example



4 COUNTING AND COUNTERS

This type of combinatorial representation of numbers is not very well suited to
being used in a counting system. However a m-out-of-n code (words with n digits
having m 1 digits) with a lexicographic order of the code words (that is the order
of ever increasing binary weight) is an example of a variation on the combinatorial
number representation.

The number of a word in such a code is determined by the following equation[2]

v () (3) () -2 ()

In this equation n, represents the bit place number of a 1 bit and the number
below n, represents the number np of that 1 bit. The bit place numbers range from
0 to n, and the bit numbers from 1 to m inclusive.

Example
place number np 6 543210
given code word 10 01 1 01
bit number Ny 4 - -3 2 -1
number weight N (2 + [gl + lg) + [?] =

5+ 1 + 1 + 0 = 17

Note that the number weight of a 1 digit in its initial position is 0.
The transition from one code word to the next (in lexicographic order) is deter-
mined by one rule

The 1 bit in the least significant 01 bit combination is shifted into the place of
the O bit in that digit pair and when this 01 digit combination has adjacent 1 bits
at its right side, then these 1 bits are shifted back to their initial positions with O
weight.

Example

=
word n°18 1001110

/
word n° 19 1010011

Application of this rule leads to a unique code with number weights according to
equation 1.13. This can be proved as follows. Let the number of adjacent 1 bits in
the group of 1 bits with the least significant 01 combination be m standing on bit
places np to np —m + 1 inclusive. The given rule can then be translated into the
following general equation

=] et o [P Ap— 1 np —m+1 =N;
Ni+1 <m) <m>+(m—1 # o 1 +1=N;+1

(1.14)
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Equations of this type can be proved in a step-by-step procedure using the following

formula
() () ()

This formula shows that all combinations m-out-of-np+, are obtained by the sum
of all combinations m-out-of-n, plus all combinations (m — 1)-out-of-np. In the
first set the digit at bit place np+; is considered to be O so that all the m 1 bits are
found in the other np, bit places. In the second set the digit at bit place np+1 is
considered to be 1 so that there are only m — 1 1 bits on the other 7, bit places.

Expression 1.12 represents the first step of the proof of equation 1.11. In the
second step, expression 1.12 is applied to the second term on the right-hand side of
equation 1.11. This leads to the following equation

npr1\ _ (M n, —1 np — 1
(m>_(m)+<m—1 K m—?2 (1.16)
This procedure ends when the following situation is reached
npi1) _ (" n, — 1 n, —m+1 n, —m+ 1\
(o) = ()« (=) oo () o (o Y o
-m+
Equation 1.17 is identical to equation 1.14 since (np (;n l) =1,Q.E.D.

Equation 1.14 reduces to the following identity for m = 1
Mper\ _ (o), (M - 1
m 1 0

np+1=np+] (118)

or

This proof of the uniqueness of the words in a constant-ratio code shows that it is
well suited to counting purposes. However implementing this counting code in
hardware is another problem. The complexity of that implementation depends on
the switching operations required to obtain a lexicographic sequence of the code
words, and this problem will be treated in detail in chapter 4.

Modular representation

This representation is also called the system of residual classes.[3] In this number
system addition, subtraction and multiplication are performed without the usual
carry problem. Since machine arithmetic is not the subject of this text, this special
feature will not be discussed except for the add 1 (or subtract 1) procedure.

In modular representation the numbers are represented by means of a number of
positive residues taken modulo p; from the decimal number to be represented.
Modulo p; must be relatively prime. The system of prime numbers satisfies this
requirement.
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Example
modulus n° : 4 3 2 1 0
modulus p; : M 7 5 3 2
127 = (6 1 2 1 1)

The maximum number that can be represented in this type of number system is
MXo pi. It follows from the definition of this modular representation that the
algorism Nj+; =N; + 1 has to be performed as an add-1 operation mod p; on all
digits in a number. Uniqueness is then ensured.

Example
pi: M 7 5 3 2
128=127+1 = (7 2 3 2 0)

Counting with large numbers in modular representation is subdivided into a number
of counting processes with smaller numbers so that the counting problem reduces
to counting with the residues.

A big problem in the attractive-looking modular representation of numbers is
how to convert these numbers back to a binary or decimal representation. This is a
rather complicated procedure resulting in the fact that the possible advantages in
the actual counting process are not set off by the disadvantages of this code conver-
sion.

1.2 SOME EXTENSIONS OF THE POLYNOMIAL REPRESENTATION

The polynomial representations of numbers using base 10 or base 2 are the most
commonly used systems. A couple of other number systems are closely related to
the binary number system and belong to those number systems which have a poly-
nomial representation of their numbers.

The number systems discussed in section 1.1 all have digits with positive weights.
This is not a necessity in number systems. The following two number systems have
positively and negatively weighted digits. Strictly speaking these systems are no
longer binary systems but ternary systems. However, the 1 digits in these numbers
are alternately positive and negative, so that it is known in advance from any code
word which digits are positive and which are negative without further indication.
The most significant 1 bit is always positive in a positive number.

The signed-digit number system

The numbers in this system are directly obtained from the ordinary binary system
by replacing all sequences of adjacent 1 digits by a pair of 1 digits in which the
most significant is positively weighted, and the least significant is negatively weighted,
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this gives the following two equations
2 tan 12" a2 T = 2 — 2" (1.19)
22" = apei 2%t —ay2" (1.20)

The second equation is identical to the first equation with m =0. The second
equation states that even a single (positive) 1 bit at digit place 7 can be replaced by
a positively weighted 1 bit at digit place n + 1 and a negatively weighted 1 bit at
place n. This is a simple law in binary arithmetic which needs no further proof.

Application of equations 1.19 and 1.20 to a binary word or number gives a
signed-digit number with an even number of 1 bits. All these words start with a
positive most significant 1 bit, further bits being alternately negative and positive,
and they end with a negative least significant 1 bit. In this transformation the
number of 1 bits is extended by one.[4]

Table 1-1 shows a 4-bit natural binary code. The corresponding 5-bit signed-digit
code is shown in column 3. The number weight in column 1 is valid for all the
codes shown in table 1-1.

Note that the weight of the digits in the signed-digit code remains a power of 2.

Table 1-1

nat. binary signed digit reflected binary
2= >E >z
E‘qg; .2 .2
23|18 4 21116181412 1 g“;’ 15 t7 13 1 qu
of0oo0O0OO|O0OOOOCO|O|lOOOO]oO
110001100011 3[00O01]1
21]0010]001-10|6|00 1|3
31]0011]J]0010-1|5[0010]|2
410100011 00120 1-1 0|66
5101 0101141 (|15(0 114 |7
6)/]0110]l010-10|10[010-]|5
710111101 00-1|9|01 00|24
81100011 00O0|24|1-1 00|12
91100111 0#a-1127]1-1 04 |13
011010114 -1 0(30[1-14-1]15
MJy101T 11114 0-1(29(1-14 0|14
2111 001 0-1 0O0(|20|1 0-1 0]1
B[1T 101101411231 014 |MN
4111 10|100-10|28|]100-1]9
%111 1111000~ (|17]1000]8

The polynomial representation of the signed digit code is as follows
N=...%n2% £+ n323 £ ny2% tny2' — np2° (1.21)

with a positive most significant non-zero n coefficient.



