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0. Introduction

0.1. Moduli of supersingular abelian varieties.

In this book we consider polarized abelian varieties over a field I\ of characteris-
tic p. In positive characteristic abelian varieties naturally have an extra structure
(not present in characteristic zero), given by properties of the subgroup scheme of
“points” of p-power order.

Let us first explain briefly the main results, and then give more details. An elliptic
curve E in characteristic p is called supersingular if it has no geometric points of
order equal to p, i.e. let E be defined over a field i’ D F,, let k be an algebraically
closed field containing A, then

E is supersingular &L E[p|(k)=0

(some notation necessary to understand the contents of this introduction will be
gathered together in 0.6 below). An abelian variety X in positive characteristic is
called supersingular if it is geometrically isogenous to a product of supersingular
elliptic curves, or in other words: if X is defined over A" D F,, the dimension of X
equals ¢, and k is an algebraically closed field containing I\, then

= F def 7
X is supersingular < X ® k ~ EY,

where E is a supersingular elliptic curve over k and “~" denotes isogeny equivalence
(there are many other characterizations and properties, see 0.6 below).

Given g € Z5y, a prime number p, and d € Zs, we denote by A, ¢4 @ F, the moduli
space of all (X, \), where X is an abelian variety of dimension ¢ with a polarization
A of degree d?, in characteristic p. We write

Sga CAga@F, (0.1.1)

for the subset corresponding to all cases where X is supersingular, called the super-
singular locus (in fact this is a closed algebraic subset).
One of the main results in this book is:
e The dimension of Sy equals [g?/4] (the integral part of ¢?/4), and
°
Hy(p.1) if g is odd,

#{irreducible components of Sy 1} = { H,(1,5) ifgiseven.



0.2. The supersingular locus in the moduli of abelian varieties.

A reader might wonder why these objects are studied, why they seem to be inter-
esting.

In characteristic p the structure of the p-power torsion of an abelian variety is
a canonical, extra structure (not present in this form in characteristic zero). Like
abelian varieties can degenerate, also the “p-structure” can “degenerate”. One can
consider “ordinary abelian varieties” (those which have the maximal possible number
of points of order p) as giving moduli points to the “interior” of the moduli space,
while one could consider “degeneration” of the p-structure (while the abelian variety
stays an abelian variety) as approaching to some kind of boundary. For example
think of a variable elliptic curve in characteristic p, and put your fingers on the
geometric points of order p; you feel that these come together when you specialize
to a supersingular elliptic curve. This gives a fine structure on these moduli spaces
which turn out to be of great help in understanding such moduli spaces (also the ones
in characteristic zero). It turns out that the supersingular abelian varieties should
be considered as the ones where the p-structure is most degenerated (analogous
to the “cusps at infinity” in the boundary). For this reason these spaces S, 4 are
interesting.

It turns out that the supersingular locus is quite different from other subsets defined
by this kind of fine structures. The geometry of these spaces is very rich, it has
certain geometric properties, but also a number theoretic flavor. Moreover, part
of the structure of these spaces can be studied by purely algebraic methods which
make some results even better accessible. We expect that while the supersingular
locus is highly reducible (for ¢ and p large), it might be true that the other loci
(e.g. the ones given by Newton polygons which are not supersingular) can very well
be irreducible. All this would give a strong approach to geometric, arithmetic and
number theoretic study of moduli spaces of abelian varieties. For these reason we
would like to understand the supersingular locus in itself very well. In this book
we study various properties of these spaces. However, we leave aside how they are
attached to the other interesting loci in the moduli space.

0.3. Polarizations, isogeny correspondences.

Why polarizations? We comment on some technical aspects of this work. First
of all one should keep in mind that there is a difference between elliptic curves on
the one hand (abelian varieties of dimension one), and abelian varieties of higher
dimensions on the other hand. An abelian variety comes naturally with a rational
point, the zero point. In the case of ¢ = 1 this defines a divisor. For this reason
every abelian variety of dimension one has a natural principal polarization; we can
speak of moduli spaces of elliptic curves, meaning abelian varieties of dimension
one with this natural (unique) principal polarization. However there are abelian
varieties (of any dimension ¢ > 1) which do not admit a principal polarization
(this phenomenon occurs in all characteristics). And, when there is a principal
polarization, it need not be unique (if ¢ > 1); actually this is one of the main
tools in the present study (we shall deal with all kind of mutually different principal
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polarizations on an abelian variety like E£9). When considering higher dimensions, it
turns out that there is no good notion of moduli spaces of abelian varieties (without
considering a polarization). For example, if one takes over the complex numbers
the set of isomorphism classes of all abelian surfaces, there is no reasonable, natural
geometric structure on this set (dividing out the equivalence relation, one might
obtain non-Hausdorff spaces, this is a very classical topic, already known more than
a century). Hence it is natural to consider polarized abelian varieties, when studying
the cases with ¢ > 1.

Isogenies. One can consider isogeny correspondences (Hecke correspondences) be-
tween components of moduli spaces. In characteristic zero, for an abelian variety
X there are only a finite number of isogenies X -- Y of a given degree, and this,
in a certain way, simplifies the study of such correspondences. However in positive
characteristic such correspondences (still well-defined) in general are not finite-to-
finite; this accounts for several interesting and difficult aspects. For example it turns
out that all of the components of the moduli space of polarized abelian varieties of
dimension ¢ over any field have the same dimension (g(g + 1)/2 in fact), isogeny
correspondences blow-up and down, but leave the dimension of the total spaces
the same; miraculously the same holds for subsets defined by the p-rank. However
components of the supersingular locus Sy = |J; Sg,4 can have different dimensions
(when g > 3), in fact numbers between [¢?/4] and g(g — 1)/2 show up. This ac-
counts for truly deep and difficult problems when studying certain closed subsets of
the moduli space of polarized abelian varieties in positive characteristic. We shall
deal with some of these questions.

0.4. PFTQs and parameter spaces of supersingular abelian varieties.

Flag type quotients. Here is the basic idea how to describe components of S,.
Almost by definition, a supersingular abelian variety comes from EY via an isogeny
EY — X. This isogeny can be chosen to be purely inseparable, and in that case the
group scheme ker(EY — X)) C EY is a repeated extension of the simple finite group
scheme «,. The basic idea is to describe the supersingular locus via all possibilities
of such finite subgroup schemes of EY. A hint what should be done is given by the
fact that a “general” supersingular abelian variety canonically is the quotient of EY
via an isogeny of degree p?(9=1/2_ Naturally this leads to the notion of flag type
quotients.
For ¢ = 2 a flag type quotient consists of

E* =X, - E?/a, = X,. (0.4.1)
Here we see that locally on the components of S, the structure is given by varying a,
inside E?, which is the same as giving a parameter on P!; in fact every component
of S, turns out to be a rational curve; the non-uniqueness of flag type quotients

for some abelian surfaces gives rise to singularities of S;; which are transversal
crossings of regular branches. For ¢ = 3 a flag type quotient consists of

E* =X, - E*/(ap)* = X1 — Xi/a, = Xo. (0.4.2)
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In most cases, for a given X, such a sequence is unique, however for some cases it
is not, and this causes the effect of singularities (in fact, of quite a bad type) on
the components of S3 ;. In general a flag type quotient, abbreviated by FTQ, for a
supersingular abelian variety Xy of dimension ¢ is a sequence

ES =X, 4 — - — Xif(ap) £ Xi_y — - = X; — Xy, (0.4.3)

where E is a supersingular elliptic curve (which, for ¢ > 2 can be chosen once and

for all).

Polarized flag type quotients. In order to obtain components of S, we have
to put a polarization on the Xy in consideration. This can be done by choosing a
polarization on EY, of degree d?-p99=1) in fact, which descends via the flag type
quotient (0.4.3) to a polarization \¢ of degree d* on X,. Then in (0.4.3) each X;
is equipped with a polarization of the appropriate degree, such that they form a
descending chain of polarizations. Such a sequence is called a polarized flag type
quotient, abbreviated PFTQ, for (Xo,Ao). The moduli space P of PFTQs exists,
and there is a surjective morphism

U:P » S,CA, (0.4.4)

As we have already mentioned earlier, also for the polarized case, for “general” po-
larized supersingular abelian varieties a PFTQ is unique. However the phenomenon
that for special cases it is not unique causes that the morphism ¥ is blowing down,
for ¢ > 3, certain subsets of this parameter space P to subsets of S;. For g > 4
this turns out to be rather bad: it might blow down a whole component of P to a
proper closed subset of a component of S, (this even happens above S 1); we call
such a component of P a “garbage component”. The existence of these was for a
long time the obstacle to describe all components of Sy 1 in the case when g > 4.
One of the main points of the present work is the (rather technical) definition of a
“rigid PFTQ”. This notion singles out a Zariski open subset P’ C P, on which the
map

v:P - S, (0.4.5)

is indeed finite to one and surjective (for example the closure of P’ in P does not
contain any of the garbage components). For a general principally polarized super-
singular abelian variety its (canonical) polarized flag type quotient is automatically
rigid. As is usual in moduli theory, once a good moduli-theoretic description is
given, one can proceed. In fact we show that any component of P’ maps finite to
one onto a (non-empty open set of a) component of S;, and any component of the
latter one can be obtained in precisely one way along this line. Once we have arrived
this point, it is clear how to proceed:

e compute the dimension of every component of P'; this turns out to be‘equal
to [g%/4] above S, 1, and

e compute the number of isomorphism classes of polarizations with the required
properties on EY in order to describe the number of components of Sy 4.

e For d = 1, the case of principally polarized supersingular abelian varieties,
this amounts to considering all polarizations

n:E9 — (EY)', with ker(n)= EI[FI7!],
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where F' is the Frobenius morphism of EY.

e For g odd this amounts to the same as the number of equivalence classes of
principal polarizations on EY, which is known to be equal to the class number
H,(p,1), hence this is the number of geometrically irreducible components
of Sg.1. For g even we obtain the class number Hy(1,p) as the number of
components.

0.5. Strategy for proving the main properties of the moduli of rigid
PFTQs.

It seems natural to consider for a given ¢ and for a given 0 < m < ¢ — 1 a moduli
space V,, of polarized, rigid, partial flags

E92Y, | — =Yy — Y. (0.5.1)
In this way we obtain a sequence of spaces and “truncation maps”
Vo — -+ — Vy_3 = V41 = {one point}, (0.5.2)

where V,, (0 <m < g — 1) is the moduli of sequences (0.5.1), and in particular Vg
is the moduli of PFTQs.

This idea has to be refined. The heart of the proof of the main result on
Sy.1 uses complete induction from g — 2 to g, by constructing moduli spaces which
combine a partial flag Y, _; — --- — Y}, for genus ¢, with a complete flag for genus
g — 2, related in some way, with extra properties, which ensure that the incomplete
flag can be completed; this is a tricky condition (see condition d) in 11.3). For
example consider the explicit condition for the case ¢ = 4 (see 9.7). The moduli
spaces thus obtained fit into a sequence of morphisms; each turns out to be a smooth
epimorphism of relative dimension one. Once this is proved the main result follows.

One may note the different behavior between Sy for odd g on the one hand, and
the same for even ¢ on the other hand. This is reflected in the fact that we consider
polarizations of EY whose kernel is E[F9"!]. For

g—1=2m wehave E[F‘']=E‘p™],
and such a polarization equals p™ times a principal polarization. For
g—1=14+2m wehave E[F‘"']=EIp™F),

which gives polarizations with a different type of behavior. Also the difference is
found back in the proof (which works by induction from g — 2 to ¢).

There is one more technical point we would like to mention. Let G be the formal
group (in this case also the p-divisible group) of a supersingular elliptic curve E.
A principal polarization on EY gives a quasi-polarization on GY. It turns out that
any two principal polarizations on EY give equivalent quasi-polarizations on G? (a
kind of global-local property). This simplifies the description of the components of
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the moduli of rigid PFTQs, and the class numbers involved describe the number of
components of Sy ;.

For further discussions of technical points, of examples, of other results, we
refer to the main text.

0.6. Some definitions used in the introduction.

In this section we collect some definitions and explain some of the terminology used
in the introduction. We shall write I\ for a field and % for an algebraically closed
field, we usually assume I’ C k. A term like “geometrically integral” will mean
“integral after @xk”.

Definition: An abelian variety defined over ' is a complete group variety over I\,
i.e. a K-group scheme which is proper over I\’ and geometrically integral. Note that
for an abelian variety the group law is commutative.

An abelian scheme X — S is an S-group scheme which is smooth and proper
over S such that all fibres are abelian varieties. (For general references see [53] or

[56].)

Definition: An elliptic curve over a field I is an abelian variety over I of dimension
one.

Note that the following properties are equivalent:

i) E is an elliptic curve over I\, isomorphisms are isomorphisms of group vari-
eties.

ii) E is an elliptic curve over ', isomorphisms are isomorphisms of varieties,
preserving the point zero.

1) E is a an algebraic curve smooth and proper over I, geometrically con-
nected, of genus 1, with a given I -rational point 0 € E(L'); isomorphisms
are isomorphisms of algebraic curves, preserving the point 0.

iv) E C P% is a projective, plane curve of degree 3, smooth over I, with a
given point 0 € E(K); isomorphisms are given by projective isomorphisms
preserving the point 0.

v) E C P%. is given by the equation

Y2Z 4+ XYZ+a3YZ? = X3 + o X*Z + ay X 2% + ag Z°

with a; € I, with the discriminant non-zero (we do not write it down here),
where the point zero on the curve is given by (0 : 1 : 0); isomorphisms are
given by projective isomorphisms preserving the point zero.

For an additive abelian group A and an integer n we write A[n] for the kernel
of xn: A — A. For a commutative group scheme G we write

G[n] = ker(nidg : G — G),
considered as a subgroup scheme of G. Note that we have
G[n](k) = G(k)[n]
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if G is a group scheme over some subfield of k.
If G is a group scheme over a field I\ of characteristic p > 0, we have the

relative Frobenius homomorphism Fg /1 G — G'?) (see 2.3), and we write G[F] =
kEI'(FG/K).

A finite surjective homomorphism X — Y between abelian schemes over S is called
an isogeny. If there exists an isogeny ¢ : X — Y, then we say X is isogenous to Y,
denoted by X ~ Y. It turns out that ~ is an equivalence relation: since n = deg(¢)
annihilates ker(¢), we have ker(¢) C X[n], hence there exists an isogeny ¢ : ¥ — X
such that ¥» 0 ¢ = n-idy, in particular ¥ ~ X.

For an abelian scheme X — S there is a dual abelian scheme X' — S. A polarization
on X — S is by definition an S-isogeny A : X — X' which on every geometric fibre is
given by an ample divisor (see [56, Definition 6.3]). A polarization is called principal
if it is an isomorphism.

Here is a way to construct abelian varieties which do not admit a principal polar-
ization. Choose an integer g € Z>3. choose a field k£ and an abelian variety X over
k such that End(X) = Z (for every characteristic such abelian varieties exist). If X
does not admit a principal polarization we are done. If X does admit a principal
polarization, choose an integer n € Z>; prime to char(k), and a cyclic subgroup
N C X of order n; then Y := X/N does not admit a principal polarization. This
can be seen as follows: there does exist an isogeny Y' — X' with kernel cyclic of
order n, a principal polarization on ¥ would give

hi=(X >X/N=Y=2Y'S5Y'/N=X"'~2X)e€End(X)2Z

if h = m -idy, then on the one hand ker(h) = (Z/mZ)?9; on the other hand ker(h)
is an extension of Z/nZ by Z/nZ, and we obtain a contradiction with ¢ > 2.

In positive characteristic one easily constructs examples (even over F,) of
abelian varieties which do not admit a separable polarization.

For the definition and existence of the moduli spaces
Ag.an — Spec(Z[1/n])
we refer to [56, 7.2].

Definition: Let X be an abelian variety over k' D F,. Then there exists an integer
f = f(X), called the p-rank of X such that

Xpl(k) = (Z/pZ).

Note that 0 < f < ¢ = dim(X). An abelian variety X is called ordinary if its p-rank
is maximal, i.e.

X is ordinary < X|[p|(k) = (z/pz)dim(x‘)_

If X and Y are isogenous to each other then f(X)= f(Y).
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An elliptic curve in positive characteristic is called supersingular if it is not
ordinary, i.e. if it does not contain a point of order p.

Over an algebraically closed field £ D F, there are, up to isomorphism, exactly three
group schemes whose structure ring has rank p over k:

Hp, ap, Z/pl.

Moreover when G is a finite group scheme over K then G = a, if and only if
GOk=a,.

An ordinary abelian variety X in characteristic p is characterized by:
X is ordinary <= X[p] ® k = ()3 ™) x (2/p2)3™X).

We see that an elliptic curve E is supersingular (when defined over a field of char-
acteristic p) if and only if E[F] = a,.

Complex multiplications and supersingularity. We give some more informa-
tion, which might explain the terminology “supersingular”.

Let X be an abelian variety of dimension ¢g. If End’(X) = End(X)®Q contains
a commutative semi-simple algebra of rank 2¢g over Q, then we say X has “sufficiently
many complex multiplications (smCM)”.

Let us explain first the case of elliptic curves. In characteristic zero, say over the
field C of complex numbers, an elliptic curve E either has the property End(E) = Z
(and we say “E has no complex multiplications”), or Z C End(E) is a proper
inclusion (and we say “E has complex multiplications”, or CM in short). It is known
classically that an elliptic curve with CM can be defined over a finite extension of
Q (i.e. over a number field); classically the j-invariant in this case was called a
“singular j-invariant”; in this case End(E) is an order in an imaginary quadratic
field.

In positive characteristic there are more possibilities. Suppose F, C K, let k
be an algebraically closed field containing K, and let E be an elliptic curve over K.
Then one of the following three properties holds:

i) End(E ® k) = Z. In this case E cannot be defined over a finite field. Equiv-
alently: its j-invariant is transcendental over F,. In this case E is ordinary.

i1) End(E @ k) is an algebra of rank 2 over Z. In this case End(FE) is an order
in an imaginary quadratic field in which p is split and E (or its j-value) is
called singular. Also in this case E is ordinary, and it can be defined over a
finite field.

iii) End(E ® k) is an algebra of rank 4 over Z. In this case its endomorphism
algebra End®(E @ k) := End(E @ k) ® Q is a central simple algebra of degree
4 over Q ramified exactly at co and at p. Moreover E[p](k) =0, and j(F) €
F,2, and E (or its j-value) is called supersingular.

A little warning: it might happen for an elliptic curve E defined over a field A" that
End(E) has rank two over Z, and End(E @ k) has rank four over Z. In that case,
char(K) = p > 0, and End(F) is an order in an imaginary quadratic number field
in which p does not split.



For every p there exists a supersingular elliptic curve over F,. The number h, of
isomorphism classes of supersingular elliptic curves (over k, say over F,) is finite,
this number is a classical invariant (we will come back to this, see 9.1). Any two
supersingular elliptic curves over F, are isogenous to each other.

Supersingular abelian varieties. For abelian varieties of arbitrary dimension
over i D F, there are many possibilities for the structure of the p-torsion subgroup
scheme, and for End(X). If End(X) is larger than Z one could say “X has complex
multiplications” (but in general we don’t), the rank of End(X) over Z can have
several values. An abelian variety X of dimension ¢ is supersingular if and only if
End(X @ k) is of rank (2g)? over Z.

We remark that in higher dimension (over A O F,) there are showing up some
complexities (or, if you like, some extra interesting features), not present for elliptic
curves:

o If dim(X) < 2 and X[p](k) = 0 then X is supersingular, however,

o for every g > 3 there is an abelian variety X of dimension ¢ with X[p](k) =0
which is not supersingular.

e As Tate showed (see [97]), any abelian variety X defined over a finite field
has sufficiently many complex multiplications. However the converse is not
quite true, as Grothendieck showed (see [66]): an abelian variety X with
smCM is isogenous to an abelian variety defined over a finite extension of the
prime field (but X need not be defined over a finite field in the case of finite
characteristic, see Appendix A.3 for more details). In particular:

e For every g > 2 there exist positive dimensional non-trivial families of super-
singular abelian varieties, in other words: in these cases there exist supersin-
gular abelian varieties not defined over a finite field, but they are isogenous
to an abelian variety defined over a finite field, e.g. to EY, where E is a
supersingular elliptic curve .

e In fact, for integers ¢ > 2 and f with 0 < f < g — 2 there exist abelian
varieties in characteristic p > 0 of dimension ¢, with p-rank equal to f, which
have smCM, but which cannot be defined over a finite field.

Newton polygons (not used in this book). Using Dieudonné-Manin theory one
can define for every abelian variety (of dimension g¢) in characteristic p its Newton
polygon (NP). This is a polygon which starts at (0,0), ends at (2¢, ¢g), which is lower
convex, and has break points with integral coordinates. Moreover for the slope A
of every side of this polygon we have 0 < A < 1. In fact ordinary abelian varieties
are characterized by the fact that the NP has g slopes equal to 0, and ¢ slopes
equal to 1. Supersingular abelian varieties turn out to be characterized by the fact
that all 2¢ slopes are equal to 1/2. Any other of these Newton Polygons is between
these two. We see that from this point of view the ordinary abelian varieties are the
most general ones, and the supersingular ones, studied in this book, are the most
particular ones.

N.B. We should mention results previously obtained, we should acknowledge con-
tributions to this topic made in the past. In order not to overburden this short
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introduction, this will be done in the Appendix of this book, where we give a his-
torical survey of (part of) this topic.

Convention. In the text we use the section numbers to index definitions, theorems,
remarks etc., for example Lemma 6.1 means the lemma in 6.1.
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1. Supersingular abelian varieties

Throughout this book we will denote by p a prime number, which is fixed unless
otherwise specified. We denote by K a field of characteristic p and by k an alge-
braically closed field containing KA. For any K-scheme X and any field extension
K' D K, we will denote X Xgpec(x) Spec(K') simply by X @ K', or even X @ K’
if there is no confusion.

In this chapter every scheme is defined over some K, unless otherwise specified.

1.1. Supersingular elliptic curves.

Let E be an elliptic curve over KA. Then either E has a geometric point of order
exactly p and FE is called ordinary, or E has no geometric point of order p and F is
called supersingular.

It is well known that the number of isomorphism classes of supersingular elliptic
curves over k is finite (the number is roughly p/12 and < [p/12]+2, cf. [23, Corollary
IV.4.23], see (9.1.4) for an exact formula), and any two supersingular elliptic curves
over k are isogenous (i.e., there exists a finite-to-one morphism from one to the
other, cf. [9, p. 252]).

1.2. Endomorphism algebra of supersingular elliptic curves.

For every prime number p there exists an elliptic curve E over the prime field F,
such that its relative Frobenius

F.:E-EPx~E (1.2.1)

satisfies
F*4p=0 (1.2.2)

(cf. [97, pp. 139-140], [98, p. 96], [100, Theorem 4.1.5]). For the rest of this book
we fix a choice of such an E over F, for each p. Note that E has the property

rankz(End(E)) = 2 (1.2.3)

and

O :=End(E ®F,2) =End(E @ k) (1.2.4)
has rank 4 over Z; it is a maximal order in the quaternion algebra
B :=End(E®k)=End(EQ®K)® QX Qu,p (1.2.5)
which is split at every prime number [ # p (see [9, p.199]).
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1.3. p-divisible groups and duality.

Fix a base scheme S. For a commutative group scheme 7 : G — S and any positive
integer n, we will denote
G[n] :=ker(ng: G — G) (1.3.1)
where ng = n - idg is the multiplication by n.
If 7 is flat and finite, we denote by GP the Cartier dual of G over S, i.e.
the structure Og-algebra of GP is isomorphic to Homo, (7.Og, Os), the dual Hopf
algebra of 7,O¢ over Og (cf. e.g. [64, 1.2]).

Let €% be the category of flat finite commutative group schemes over S whose
ranks are powers of p. Let €5 be the category of formal inductive limits in €L:

G =1limG, (1.3.2)
—
satisfying
a) Gp = Gpi1[p"] for each n.

Such a G is called a commutative formal group, and it is called a p-divisible group
if in addition that
b) pg is an epimorphism.
Condition b) is equivalent to that the homomorphism Gp.41 — G, induced by
pc is an epimorphism for each n, in this case we have induced monomorphisms
GP — GP,, and we denote
G' =1limGP, (1.3.3)
—
n

called the Serre dual of G.

An isogeny of p-divisible groups is an epimorphism with finite kernel. If there is
an isogeny from G to G', then we say G and G’ are isogenous to each other, denoted

by G ~ G'.

1.4. The formal isogeny type of an abelian variety.

For an abelian scheme X over S we define:

ppX = li_r)n(X[p’]). (1.4.1)
(Sometimes this is denoted by X[p®].) This is a p-divisible group, called the
Barsotti-Tate group of X.

Denote by X the dual abelian scheme of X. Clearly we have ¢,(X") = (¢,X)"
(see (1.3.3) and [56, II.15]).

Over an algebraically closed field k, the p-divisible groups have been classified
up to isogeny by the Dieudonné-Manin theory. For the case of Barsotti-Tate groups
we have:

op X ~ D (Gmini ® Gnimi) D GTY D (Gro® Go)®
: (1.4.2)
(mi >n; >0, g.c.d.(mi,n;) = 1);
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here G, n is a simple p-divisible group over k (see [48, p.37]) which has the following
properties: dimy Lie(Gm,n) = m and dimi Lie(GY, ,) = n (cf. (2.1)). Such a
decomposition (up to isogeny) is called a formal isogeny type. (The symmetry in
(1.4.2) is called the “Manin symmetry condition”.) We say that this formal isogeny
type is

supersingular iff o, X ~ G?"}

where ¢ = dim(X). In general, an abelian variety X over K is called supersingular
if p,(X @K k) is supersingular.

Convention: The p-divisible group G, » is defined over F,, however for any field
extension F, C A we shall write G, » instead of G .n ® K. The same for ay, pp,
Ga, G, in case no confusion can arise.

1.5. The a-number.
For a commutative group scheme X over a field A" we define
a(X) = dimy Hom(a,,X). (1.5.1)
If K C K' then
dimy Hom(a,, X) = dimg Hom(a,, X @ K'), (1.5.2)

i.e. the a-number does not depend on the field we are working over. Furthermore,
there is a smallest subgroup scheme A(X) C X containing all of the images of
ap, — X; note that its rank is p*X) (see 2.5).

1.6. A characterization of supersingularity.

Supersingular abelian varieties are distinguished from other abelian varieties by the
following property. For any formal isogeny type which is not supersingular, there
exists a simple abelian variety over k having this formal isogeny type (cf. [44, p.47]).
However for supersingular formal isogeny types with g > 2 the situation is different:

Fact. Let X be an abelian variety of dim-ension g > 2. Then
1) X is supersingular if and only if X @ k ~ EY @ k, thus:

pp(X«@k)vafJ — XQRk~FEIQk;
i) aX)=g <<= XQkZEIQRQEL.

The first statement can be found in [67, Theorem 4.2]. For the second statement
one uses [69, Theorem 2]: we see that a(X) = g iff X ® k is isomorphic to a product
Ey x ... x E4 of supersingular elliptic curves over k; by a theorem due to Deligne
(using a calculation by Eichler) and to Ogus (cf. [62, Theorem 6.2] and [95, Theorem
3.5]), we know that for any g > 2 and any supersingular elliptic curves E,, ..., Eq,

over k,
Eix..xE;g=FEg41 x...x Eyg. (1.6.1)
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