ENFZE Cookbook (R

Expressions
Cookbook

O’REJLLY@ Jan Goyvaerts
K% HiRat & Steven Levithan &

 O'REILLY®

EEMFiZEFK Cookbook (EER)

ABIREE T 100X BT, HHEFIHIE

M Fe R AP . $RINCA, R F RERETR

& | FIEWREAMHK ZH, HREES R TR

b%ﬂaﬁz,&% PELBFERFROH P OE S EFIMERRAE,

DA RREE A N RRAEEIR . (IEMIZA K Cookbook)

i B bk TR fe WAE S5 T8 g, sk e R4 7

C#. Java_, JavaScript, Perl, PHP Python, Rubyf1VB.NET

&S P IENF AR RS,

BiEAA, PRfs.

o LI TR T A BORE L R LE W 0 S B A i

o EZFGRFERIEIASLE F b Aot B E N ik K

o ARG UE R R A E A

o RIURIE, fr. FERF AP REUE

« JRFUEURL, B, bricFnsod 22 # b (5 A E N &5 X
F ik

o HOTE SRR N A A

o HREARIESPIENFEEXMSHEFED, EHET
AN]

o EPARETRE, 45 E MM ErEN R

EwHmEMEELELGBEFTMM/, EM &KX
Cookbook)) #HFA BY T4 adiX — B ifi A v B AU T B A3
. VRt E B DhRE SR AR MIRTHL TS, B G FNiE 5 4 3 0 BA B,
Fl| 3% — 28 ek 90 e 0 00 0 775 15 Rt e B S thE SR o RS, M T
RS oI

www.oreilly.com

O'Reilly Media, Inc.4& 48 & & Kk 5 o FRAL Rk

EEOMERTEPEARKARRN (EFAFETEEFE. RIBITHENPEEEEX) HERTT

This Authorized Edition for sale only in the territory of People's Republic of China (excluding

Hong Kong, Macao and Taiwan)

CXRAROITIEREE,
AEAL. RUUET NMEH
BEVRES T EHED, 7

Nikolaj Lindberg,

RIS ¥XK,
STTS Speech

Technology Services

“ (IEMFikX Cookbook) 3¢
XA T IG A e B TR
RE., Bz, RIXEHFHZ
HREIER. ”

Zak Greant,
FHcHA B %
Fidk ng 5

Jan Goyvaerts£ % Just Great
Software#k 24w, fEXFKA
Al fib 7 9T 15 T R — L R
TR IENZ R AU,

Steven Levithanjd —{f
JavaScriptik | Z ik AU &
K, [a]Ifibid 7 58— A LAE]
238 N 2 24 oD 1Y I A7 1l
.

ISBN #78-7-5641-1931-7

(R

787 564 1'11 9317
EH: 72.007T

IE M| 3R 3% 3K Cookbook (zenx)

Regqular Expressions Cookbook

Jan Goyvaerts & Steven Levithan

O’REILLY"

Beijing » Cambridge + Farnham < Kéln « Sebastopol « Taipei « Tokyo

O’Reilly Media, Inc. #A & d& X & & fdt H BR

REKXFHRM

BBEREE (CIP) BiR

ENFiAR Cookbook: EX/ (F) FELFH
(Goyvaerts, J.), (%) 3¥3X# (Levithan,S.) ¥F.—
B4 . —@3: AmAZtiket, 20101

$54JH3C. Regular Expressions Cookbook

ISBN 978-7-5641-1931-7

[.ET.0% - OF - . EMFREX-EKX
IV . TP301.2

Hh E A B 150 CIP $edgk s (2009) 3205641 5

LA RRAURE TR FIRIL
A% 10-2009-247 5

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form,
¥ X B i d O'Reilly Media, Inc. & 3 2009,

EX B W A bk R BB 2009, JhE R AR &Y i RRA AN B AT B o BRAR A B ALK BT A K
—— O'Reilly Media, Inc. 853577,

MAFRA, ABRBRHT, KHGETRIP SRTFUETH X8,

1ENF5557%; Cookbook (BZENER)

R & AT: KK MR

o dE: EORINRR2 S R %4 : 210096
AR A: T &

| fik . http://press.seu.edu.cn

M, TP {4: press@seu.edu.cn

Bl Rl B A EIRIERA

F A TBTERK x 980K 16 FE
ER 5. 32 ENsk

5 #r. S38F=

B k. 2010481 HE 1R

El k: 20104 1 A% 1 kENKI

=ﬁ'y 2. ISBN 978-7-5641-1931-7

En . 1~1600 #

£ H#r. 72.00 ¢ ()

FHELERNERRFAE, FHESETRSWRSE, BiF ((FH). 025-83792328

IE M 3%3% 3% Cookbook (& enix)

Regular Expressions Cookbook

Preface

Over the past decade, regular expressions have experienced a remarkable rise in pop-
ularity. Today, all the popular programming languages include a powerful regular ex-
pression library, or even have regular expression support built right into the language.
Many developers have taken advantage of these regular expression features to provide
the users of their applications the ability to search or filter through their data using a
regular expression. Regular expressions are everywhere.

Many books have been published to ride the wave of regular expression adoption. Most
do a good job of explaining the regular expression syntax along with some examples
and a reference. But there aren’t any books that present solutions based on regular
expressions to a wide range of real-world practical problems dealing with text on a
computer and in a range of Internet applications. We, Steve and Jan, decided to fill that
need with this book.

We particularly wanted to show how you can use regular expressions in situations
where people with limited regular expression experience would say it can’t be
done, or where software purists would say a regular expression isn’t the right tool for
the job. Because regular expressions are everywhere these days, they are often a readily
available tool that can be used by end users, without the need to involve a team of
programmers. Even programmers can often save time by using a few regular expressions
for information retrieval and alteration tasks that would take hours or days to code in
procedural code, or that would otherwise require a third-party library that needs prior
review and management approval.

Caught in the Snarls of Different Versions

As with anything that becomes popular in the IT industriy, regular expressions come
in many different implementations, with varying degrees of compatibility. This has
resulted in many different regular expression flavors that don’t always act the same
way, or work at all, on a particular regular expression.

Many books do mention that there are different flavors and point out some of the
differences. But they often leave out certain flavors here and there—particularly
when a flavor lacks certain features—instead of providing alternative solutions or
workarounds. This is frustrating when you have to work with different regular expres-
sion flavors in different applications or programming languages.

Casual statements in the literature, such as “everybody uses Perl-style regular expres-
sions now,” unfortunately trivialize a wide range of incompatibilities. Even “Perl-style”
packages have important differences, and meanwhile Perl continues to evolve. Over-
simplified impressions can lead programmers to spend half an hour or so fruitlessly
running the debugger instead of checking the details of their regular expression imple-
mentation. Even when they discover that some feature they were depending on is not
present, they don’t always know how to work around it.

This book is the first book on the market that discusses the most popular and feature-
rich regular expression flavors side by side, and does so consistently throughout the
book.

Intended Audience

You should read this book if you regularly work with text on a computer, whether that’s
searching through a pile of documents, manipulating text in a text editor, or developing
software that needs to search through or manipulate text. Regular expressions are an
excellent tool for the job. Regular Expressions Cookbook teaches you everything you
need to know about regular expressions. You don’t need any prior experience what-
soever, because we explain even the most basic aspects of regular expressions.

If you do have experience with regular expressions, you'll find a wealth of detail that
other books and online articles often gloss over. If you’ve ever been stumped by a regex
that works in one application but not another, you’ll find this book’s detailed and equal
coverage of seven of the world’s most popular regular expression flavors very valuable.
We organized the whole book as a cookbook, so you can jump right to the topics you
want to read up on. If you read the book cover to cover, you’ll become a world-class
chef of regular expressions.

This book teaches you everything you need to know about regular expressions and then
some, regardless of whether you are a programmer. If you want to use regular expres-
sions with a text editor, search tool, or any application with an input box labeled
“regex,” you can read this book with no programming experience at all. Most of the
recipes in this book have solutions purely based on one or more regular expressions.

If you are a programmer, Chapter 3 provides all the information you need to implement
regular expressions in your source code. This chapter assumes you’re familiar with the
basic language features of the programming language of your choice, bur it does not
assume you have ever used a regular expression in your source code.

x | Preface

Technology Covered

.NET, Java, JavaScript, PCRE, Perl, Python, and Ruby aren’t just back-cover buzz-
words. These are the seven regular expression flavors covered by this book, We cover
all seven flavors equally. We’ve particularly taken care to point out all the inconsisten-
cies that we could find between those regular expression flavors.

The programming chapter (Chapter 3) has code listings in C#, Java, JavaScript, PHP,
Perl, Python, Ruby, and VB.NET. Again, every recipe has solutions and explanations
for all eight languages. While this makes the chapter somewhat repetitive, you can easily
skip discussions on languages you aren’t interested in without missing anything you
should know about your language of choice.

Organization of This Book

The first three chapters of this book cover useful tools and basic information that give
you a basis for using regular expressions; each of the subsequent chapters presents a
variety of regular expressions while investigating one area of text processing in depth.

Chapter 1, Introduction to Regular Expressions, explains the role of regular expressions
and introduces a number of tools that will make it easier to learn, create, and debug
them.

Chapter 2, Basic Regular Expression Skills, covers each element and feature of regular
expressions, along with important guidelines for effective use.

Chapter 3, Programming with Regular Expressions, specifies coding techniques and
includes code listings for using regular expressions in each of the programming lan-
guages covered by this book.

Chapter 4, Validation and Formatting, contains recipes for handling typical user input,
such as dates, phone numbers, and postal codes in various countries.

Chapter 5, Words, Lines, and Special Characters, explores common text processing
tasks, such as checking for lines that contain or fail to contain certain words.

Chapter 6, Numbers, shows how to detect integers, floating-point numbers, and several
other formats for this kind of input.

Chapter 7, URLs, Paths, and Internet Addresses, shows you how to take apart and

manipulate the strings commonly used on the Internet and Windows systems to find
things.

Chapter 8, Markup and Data Interchange, covers the manipulation of HTML, XML,
comma-separated values (CSV), and INI-style configuration files.

Preface | «

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, program elements such as variable or function names,
values returned as the result of a regular expression replacement, and subject or
input text that is applied to a regular expression. This could be the contents of a
text box in an application, a file on disk, or the contents of a string variable.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

«Regulareexpression:
Represents a regular expression, standing alone or as you would type it into the
search box of an application. Spaces in regular expressions are indicated with gray
circles, except when spaces are used in free-spacing mode.

«Replacementetext»
Represents the text that regular expression matches will be replaced with in a
search-and-replace operation. Spaces in replacement text are indicated with gray
circles.

Matched text
Represents the part of the subject text that matches a regular expression.

A gray ellipsis in a regular expression indicates that you have to “fill in the blank”
before you can use the regular expression. The accompanying text explains what
you can fill in.

(R, [LF, and
CR, LF, and CRLF in boxes represent actual line break characters in strings, rather
than character escapes such as \r, \n, and \r\n. Such strings can be created by
pressing Enter in a multiline edit control in an application, or by using multiline
string constants in source code such as verbatim strings in C# or triple-quoted
strings in Python.

The return arrow, as you may see on the Return or Enter key on your keyboard,
indicates that we had 1o break up a line to make it fit the width of the printed page.
When typing the text into your source code, you should not press Enter, but instead
type everything on a single line.

xii | Preface

L)
- This icon signifies a tip, suggestion, or general note.

&
'@:“ a
™\

"
.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Regular Expressions Cookbook by Jan
Goyvaerts and Steven Levithan. Copyright 2009 Jan Goyvaerts and Steven Levithan,
978-0-596-2068-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S .»» When you see a Safari® Books Online icon on the cover of your favorite
atarl technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at hitp://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xiii

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http://'www.regexcookbook.com

orat:
http://oreilly.com/catalog/9780596 520687

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

hitp:/lwww.oreilly.com

Acknowledgments

We thank Andy Oram, our editor at O’Reilly Media, Inc., for helping us see this project
from start to finish. We also thank Jeffrey Friedl, Zak Greant, Nikolaj Lindberg, and
Ian Morse for their careful technical reviews, which made this a more comprehensive
and accurate book.

xiv | Preface

Table of Contents

Preface ...t vt e rreaaiitiaeeaiaieter s et eereaaas ix
1. Introduction to Regular Expressions Ceereeieeaesnieas Creeeieienerea 1
Regular Expressions Defined 1
Searching and Replacing with Regular Expressions 5
Tools for Working with Regular Expressions 7

2. Basic Regular Expression Skills Creeees Vassasessasananeas . 25
2.1 Match Literal Text 26

2.2 Match Nonprintable Characters 28

2.3 Match One of Many Characters 30

2.4 Match Any Character 34

2.5 Match Something at the Start and/or the End of a Line 36

2.6 Match Whole Words 41

2.7 Unicode Code Points, Properties, Blocks, and Scripts 43

2.8 Match One of Several Alternatives 55

2.9 Group and Capture Parts of the Match 57

2.10 Match Previously Matched Text Again 60

2.11 Capture and Name Parts of the Match 62

2.12 Repeat Part of the Regex a Certain Number of Times 64

2.13 Choose Minimal or Maximal Repetition 67

2.14 Eliminate Needless Backtracking 70

2.15 Prevent Runaway Repetition 72

2.16 Test for a Match Without Adding It to the Overall Match 75

2.17 Match One of Two Alternatives Based on a Condition 81

2.18 Add Comments to a Regular Expression 83

2.19 Insert Literal Text into the Replacement Text 85

2.20 Insert the Regex Match into the Replacement Text 87

2.21 Insert Part of the Regex Match into the Replacement Text 88

2.22 Insert Match Context into the Replacement Text 92

3. Programming with Regular Expressions

Programming Languages and Regex Flavors

31
3.2
3.3
3.4
3.5
3.6
37
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4. Validation and Formatting

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Literal Regular Expressions in Source Code

Import the Regular Expression Library

Creating Regular Expression Objects

Setting Regular Expression Options

Test Whether a Match Can Be Found Within a Subject String
Test Whether a Regex Matches the Subject String Entirely
Retrieve the Matched Text

Determine the Position and Length of the Match

Retrieve Part of the Matched Text

Retrieve a List of All Matches

Iterate over All Matches

Validate Matches in Procedural Code

Find a Match Within Another Match

Replace All Matches

Replace Matches Reusing Parts of the Match

Replace Matches with Replacements Generated in Code
Replace All Matches Within the Matches of Another Regex
Replace All Matches Between the Matches of Another Regex
Split a String

Split a String, Keeping the Regex Matches

Search Line by Line

Validate Email Addresses

Validate and Format North American Phone Numbers
Validate International Phone Numbers
Validate Traditional Date Formats
Accurately Validate Traditional Date Formats
Validate Traditional Time Formats

Validate ISO 8601 Dates and Times

Limit Input to Alphanumeric Characters
Limit the Length of Text

Limit the Number of Lines in Text

Validate Affirmative Responses

Validate Social Security Numbers

Validate ISBNs

Validate ZIP Codes

Validate Canadian Postal Codes

Validate U.K. Postcodes

Find Addresses with Post Office Boxes

213
213
219
224
226
229
234
237
241
244
248
253
254
257
264
265
266
266

vi | Table of Contents

4.18 Reformat Names From “FirstName LastName” to “LastName,

4.19
4.20

5. Words, Lines, and Special Characters

5.1
5.2
53
5.4

5.5 Find Any Word Not Followed by a Specific Word
5.6 Find Any Word Not Preceded by a Specific Word

5.7
5.8
59
5.10

5.11 Match Complete Lines That Do Not Contain a Word

5.12

5.13 Replace Repeated Whitespace with a Single Space

5.14

6. Numbers

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7. URLs, Paths, and Internet Addresses

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

FirstName”
Validate Credit Card Numbers
European VAT Numbers

Find a Specific Word

Find Any of Multiple Words
Find Similar Words

Find All Except a Specific Word

Find Words Near Each Other

Find Repeated Words

Remove Duplicate Lines

Match Complete Lines That Contain a Word

Trim Leading and Trailing Whitespace

Escape Regular Expression Metacharacters

Integer Numbers

Hexadecimal Numbers

Binary Numbers

Strip Leading Zeros

Numbers Within a Certain Range
Hexadecimal Numbers Within a Certain Range
Floating Point Numbers

Numbers with Thousand Separators

Roman Numerals

Validating URLs

Finding URLs Within Full Text

Finding Quoted URLs in Full Text

Finding URLs with Parentheses in Full Text
Turn URLs into Links

Validating URNs

Validating Generic URLs

Extracting the Scheme from a URL
Extracting the User from a URL

Extracting the Host from a URL

268
271
278

............... 285

285
288
290
294
295
297
300
306
308
312
313
314
317
319

............... 323

323
326
329
330
331
337
340
343
344

............... 347

347
350
352
353
356
356
358
364
366
367

Table of Contents | vii

7.11 Extracting the Port from a URL 369
7.12 Extracting the Path from a URL 371
7.13 Extracting the Query from a URL 374
7.14 Extracting the Fragment from a URL 376
7.15 Validating Domain Names 376
7.16 Matching IPv4 Addresses 379
7.17 Matching IPv6 Addresses 381
7.18 Validate Windows Paths 395
7.19 Split Windows Paths into Their Parts 397
7.20 Extract the Drive Letter from a Windows Path 402
7.21 Extract the Server and Share from a UNC Path 403
7.22 Extract the Folder from a Windows Path 404
7.23 Extract the Filename from a Windows Path 406
7.24 Extract the File Extension from a Windows Path 407
7.25 Strip Invalid Characters from Filenames 408
8. MarkupandDatalnterchangeccovvviviiininiirennnnrennnnns AN
8.1 Find XML-Style Tags 417
8.2 Replace Tags with 434
8.3 Remove All XML-Style Tags Except and 438
8.4 Match XML Names 441
8.5 Convert Plain Text to HTML by Adding <p> and
 Tags 447
8.6 Find a Specific Attribute in XML-Style Tags 450
8.7 Add a cellspacing Attribute to <table> Tags That Do Not Already
Include It 455
8.8 Remove XML-Style Comments 458
8.9 Find Words Within XML-Style Comments 462
8.10 Change the Delimiter Used in CSV Files 466
8.11 Extract CSV Fields from a Specific Column 469
8.12 Match INI Section Headers 473
8.13 Match INI Section Blocks 475
8.14 Match INI Name-Value Pairs 476
Index «..ovii i e e Cererereieeaes . 479

viii | Table of Contents

CHAPTER1
Introduction to Regular Expressions

Having opened this cookbook, you are probably eager to inject some of the ungainly
strings of parentheses and question marks you find in its chapters right into your code.
If you are ready to plug and play, be our guest: the practical regular expressions are
listed and described in Chapters 4 through 8.

But the initial chapters of this book may save you a lot of time in the long run. For
instance, this chapter introduces you to a number of utilities—some of them created
by one of the authors, Jan—that let you test and debug a regular expression before you
bury it in code where errors are harder to find. And these initial chapters also show you
how to use various features and options of regular expressions to make your life easier,
help you understand regular expressions in order to improve their performance, and
learn the subtle differences between how regular expressions are handled by different
programming languages—and even different versions of your favorite programming
language.

So we've put a lot of effort into these background matters, confident that you'll read it
before you start or when you get frustrated by your use of regular expressions and want
to bolster your understanding.

Regular Expressions Defined

In the context of this book, a regular expression is a specific kind of text pattern that
you can use with many modern applications and programming languages. You can use
them to verify whether input fits into the text pattern, to find text that matches the
pattern within a larger body of text, to replace text matching the pattern with other
text or rearranged bits of the matched text, to split a block of text into a list of subtexts,
and to shoot yourself in the foot. This book helps you understand exactly what you’re
doing and avoid disaster.

History of the Term ‘Regular Expression’

The term regular expression comes from mathematics and computer science theory,
where it reflects a trait of mathematical expressions called regularity. Such an expres-
sion can be implemented in software using a deterministic finite automaton (DFA). A
DFA is a finite state machine that doesn’t use backtracking.

The text patterns used by the earliest grep tools were regular expressions in the math-
ematical sense. Though the name has stuck, modern-day Perl-style regular expressions
are not regular expressions at all in the mathematical sense. They’re implemented with
a nondeterministic finite automaton (NFA). You will learn all about backtracking
shortly. All a practical programmer needs to remember from this note is that some ivory
tower computer scientists get upset about their well-defined terminology being over-
loaded with technology that’s far more useful in the real world.

If you use regular expressions with skill, they simplify many programming and text
processing tasks, and allow many that wouldn’t be at all feasible without the regular
expressions. You would need dozens if not hundreds of lines of procedural code to
extract all email addresses from a document—code that is tedious to write and hard to
maintain. But with the proper regular expression, as shown in Recipe 4.1, it takes just
a few lines of code, or maybe even one line.

But if you try to do too much with just one regular expression, or use regexes where
they’re not really appropriate, you'll find out why some people say:*

Some people, when confronted with a problem, think “1 know, I'll use regular expres-
sions.” Now they have two problems.

The second problem those people have is that they didn’t read the owner’s manual,
which you are holding now. Read on. Regular expressions are a powerful tool. If your
job involves manipulating or extracting text on a computer, a firm grasp of regular
expressions will save you plenty of overtime.

Many Flavors of Regular Expressions

All right, the title of the previous section was a lie. We didn’t define what regular
expressions are. We can’t. There is no official standard that defines exactly which text
patterns are regular expressions and which aren’t. As you can imagine, every designer
of programming languages and every developer of text processing applications has a
different idea of exactly what a regular expression should be. So now we’re stuck with
a whole palate of regular expression flavors.

Fortunately, most designers and developers are lazy. Why create something totally new
when you can copy what has already been done? As a result, all modern regular ex-
pression flavors, including those discussed in this book, can trace their history back to

" Jeffrey Friedl traces the history of this quote in his blog at http://regex.infolblog/2006-09-15/247.

2 | Chapter1: Introduction to Regular Expressions

