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preface

This book is intended as a textbook, not a reference book or handbook.
Our objective is to present momentum, heat, and mass transfer from a
macroscopic point of view. Specifically, we present material (1) to
provide the student with a basic knowledge of the mechanisms by which
momentum, heat, and mass are transferred and (2) to introduce the
student to the design equations for momentum, heat, and mass and to the
use of these equations. The course for which this textbook is used in the
School of Chemical Engineering at Purdue University is the first of a
three-course transport sequence. The second course in the sequence is
one in transport phenomena—a microscopic point of view—and the third
a laboratory where both transfer coefficients and transport coefficients are
determined. We believe this sequence—presenting the macroscopic
approach before the microscopic—to be the soundest from a pedagogical
point of view. To use with understanding the transport approach, with its
" more sophisticated mathematics, requires the physical insight and the mo-
tivation of recognized applications which this text provides.

Although the course taught from this book is in a sequence in the
School of Chemical Engineering, it does stand alone in that the techniques
presented are immediately applicable. The course is required for juniors
in chemical engineering, industrial engineering, and materials science and
metallurgical engineering. Only the chemical engineers take the three-
course sequence. Students from other departments, such as agricultural,
nuclear, and mechanical engineering, and food science and home econom-
ics students who have sufficient background and who wish a course in
momentum, heat, and mass transfer with practical application, also take
this course.

The text is built around a large number of examples which are
worked in detail. Many of the examples are, of course, idealized because
their purpose is to illustrate elementary principles, but we have kept them
as realistic as possible. The text is arranged in a matrix fashion as shown
in Table 1.2-1 on page 5. Within reason, either the columns or rows of
this matrix stand alone. In other words, one could go through the intro-
ductory material of column 1 as one “subject,” the momentum transfer of
column 2 as one ‘“‘subject,” etc., or one could look at mechanism in row 1

as one ‘“‘subject,” the design equation in row 2 as one ‘‘subject,” etc.
)
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xiv PREFACE

At Purdue the course is taught by successive columns (which is the
sequence for chapter numbers). Each column represents approximately
one-fourth of a four-semester-credit course. The chapters on applications
(Chap. 4, 7, 10, and 13) are not taught in their entirety since they do not
contain principles; rather, they are assigned as reading and specific parts
may be employed as illustrations by the instructor. These four chapters
are designed to show how overall balances are used, how transfer coeffi-
cients are measured, how the design equations are used in a real system,
and how these calculations are integrated into a real system. (The indus-
trial and material science and metallurgical engineers at Purdue have the
option of ending the course for three semester credits by omitting the
fourth part on mass transfer.)

We have taken the position in writing this book that it is part of the
instructional material available to the student—the instructor teaching the
course is the other part. The procedures presented are common ones
which provide the base for various, but limited, solution procedures on
which the instructor may choose to build further, or not as he sees fit. We
have accepted equipment as a basic but secondary part of transfer opera-
tions; we concentrate on the principles and we use practical examples and
system applications. The equipment is included as a matter of fact. A
particular instructor may wish to emphasize or deemphasize this point
depending on his own approach to the topics.

We owe an original debt to Professors Jack Myers and Alexander
Sesonske in whose association both the authors were introduced to this
general area of undergraduate teaching. We also have been helped in con-
struction of examples and review of the notes by Professors Ron Barile,
Neal Houze, and Theo Theofanous of the School of Chemical Engineer-
ing at Purdue, by Larry Hochreiter, a graduate student in Nuclear Engi-
neering, and by Dr. Tom Sifferman, a former graduate student in
Mechanical Engineering. We wish to thank Susie O’Dore and Linda
Rhodes for their patient efforts in typing and retyping the manuscript. In
addition, the Chemical Engineering Department of the University of
California, Berkeley, deserves our thanks for permitting one of the au-
thors to teach a course from the notes as a visiting professor at a critical
time in the text development. The Pan American Petroleum Corporation
was most cooperative. It provided the flow sheet for the Natural Gaso-
line Plant and reviewed the application examples in Chaps. 7, 10, and 13.
A last but most significant debt goes to Snooker Table Number 4 in the
Purdue Billiard Room—where the emotions and frustrations associated
with writing the text found release.

R. A. GREENKORN
D. P. KESSLER




list of symbols

= area, L?

= interfacial area per unit volume of bed, L™!

= discharge coefficient, dimensionless

= heat capacity at constant pressure, per unit
mass, L2/t2T

= heat capacity at constant volume, per unit
mass, L2/2T

= pitot tube coefficient, dimensionless

= total molar concentration, moles/L?

= venturi coefficient, dimensionless

= molar concentration of species i, moles/L?

= characteristic length in dimensional analysis or
diameter of sphere or cylinder, L

= particle diameter, L

= binary diffusivity for system 4-B, L?/t

= binary diffusivity for system i-j, L2/t

= U + K + ¢ = total fluid energy, ML?/t>

=2.71828...

= emissivity, dimensionless

= total energy flux relative to stationary
coordinates, M/t3

= force of a fluid on an adjacent solid, ML/t>

= direct view factor, dimensionless

= indirect view factor, dimensionless

= combined emissivity and view factor,
dimensionless

= friction factor or drag coefficient,
dimensionless

= molar velocity, moles/tL?

= H — TS = Gibbs free energy, or “free
enthalpy,” ML2?/t?

= gravitational acceleration, L/t?

= force-mass conversion factor

= U + pV = enthalpy, ML?/t?

= heat transfer coefficient, M/t3T

= Planck’s constant, M L2/t
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h = elevation, L

i =V—-I1

J; = molar flux of i relative to mass average
velocity, moles/tL?

¥ g = molar flux of species i relative to the molar
average velocity, moles/tL?

Ji = mass flux of i relative to mass average
velocity, M/tL?

i = mass flux of species i relative to the molar
average velocity, M/tL?

Jb = Chilton-Colburn j factor for mass transfer,
dimensionless

Ju = Chilton-Colburn factor for heat transfer,
dimensionless

K = kinetic energy, ML?/t?

k = roughness, L

k = shape factor, dimensionless

k = thermal conductivity, ML/t3*T

ky = homogeneous chemical reaction rate constant,
moles!™"/L33¢

ks = mass transfer coefficient in a binary system,
moles/tL?

ki = mass transfer coefficient of speciesiina

multicomponent mixture, moles/tL?

= length of tube or other characteristic length, L

= molar velocity, moles/tL?

= molar mean molecular weight, M/mole

molecular weight of A, M/mole

= moles of material

= moles of component i

= mass of a molecule, M

= mass of flow system, M

= mass of component / in flow system, M

= Avogadro’s number, (g mole)™!

= rate of rotation of a shaft, !

= molar flux with respect to stationary
coordinates, moles/L?¢

= mass flux with respect to stationary
coordinates, M/L2t

= molecular concentration or number density,
L—3

= outward normal

= momentum, ML/t

= p + pgh (for constant p and g), M/LT?
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= fluid pressure, M/Lt>

= vapor pressure, M/Lt?

= partial pressure, M/Lt?

= amount of heat transfer, ML?/t3

= volumetric flow rate, L3/t

= rate of energy flow across a surface, ML?/t3

= radiant energy flow from surface 1 to surface
2. -ML2t®

= net radiant energy interchange between
surface 1 and surface 2, ML?/t?

= energy flux relative to mass average velocity,
M/t3

= gas constant, ML?/t>T mole

radius of sphere or cylinder, L

hydraulic radius, L

= molar rate of production of species 4,
moles/tL3

= radial distance in both cylindrical and
spherical coordinates, L

= mass rate of production of species A, M/tL?

= cross-sectional area, L2

= vector giving cross-sectional area and its
orientation, L2

= R — r = distance into fluid from solid bound-
ary in cylindrical coordinates, L

= absolute temperature, T

= time, ¢

= internal energy, ML?/t?

= overall heat transfer coefficient, M/t3T

= characteristic speed in dimensional analysis,
L/t

= volume, L3

= mass average velocity, L/t

velocity of species i, L/t

= approach velocity, L/t

= molar average velocity, L/t

= rate of doing work on surroundings, ML?/[t3

amount of work done

= molar flow rate, moles/t

= molar flow of species A through a surface,
moles/t

= vector giving mass flow rate and its direction,
Mi]t

= mass flow rate, M/t
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= mass flow of species A through a surface, M/t

= rectangular coordinate, L

= mole fraction of species i, dimensionless

= rectangular coordinate, L

= mole fraction of species i, dimensionless

= rectangular coordinate, L

= k/pC , = thermal diffusivity, angle,
absorptivity

= thermal coefficient of volumetric expansion,
T—l

= 5,,/6,,, reflectivity, dimensionless

= a, — a,,in which 1 and 2 refer to two control
surfaces

= film thickness, L

= fractional void space, emissivity, dimensionless

= non-Newtonian viscosity, M/Lt

= angle in cylindrical or spherical coordinates,
radians

= wavelength of electromagnetic radiation, L

= viscosity, M/Lt

= parameter in Bingham model, M/Lt

= frequency of electromagnetic radiation, ¢!

= u/p = kinematic viscosity, L2/t

=3.14159...

= nm = fluid density, M/L3

= mass concentration of species i, M/L?

= Stefan-Boltzmann constant, M/t3T*

= transmissivity, dimensionless

= parameter in Bingham model, M/t2L

= magnitude of shear stress at fluid-solid
interface, M/t*L

= potential energy, ML2?/t?

= angle in spherical coordinates, radians

= stream function; dimensions depend on
coordinate system

= potential function

= mass fraction of /, dimensionless

= per mole

= per unit mass
= partial molal
= time smoothed
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Brackets
<q=
Superscripts
*

’

t

/i
Subscripts
‘A, B

av

S

tot

1,2

Xix

= weighted value of a over a flow cross section

= reduced with respect to some characteristic
dimension

= deviation from time-smoothed value

= turbulent

= laminar

= species in binary systems

= arithmetic mean driving force or associated
transfer coefficient

= bulk or “mixing-cup’’ value for enclosed
stream

= gas

= liquid

= species in multicomponent systems

= logarithmic mean driving force or associated
transfer coefficient

= local transfer coefficient

= mean transfer coefficient for a submerged
object

= total quantity in a macroscopic system

= quantity evaluated at a surface

= quantity evaluated at cross sections “1”” and
cpn
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