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Preface

In this monograph we give a classification of all three—dimensional homogen-
eous complex manifolds. A complex manifold X is called homogeneous if there
exists a connected complex or real Lie group G acting transitively on X as a
group of biholomorphic transformations. The goal is to classify these manifolds
up to biholomorphic equivalence.

Since the class of homogeneous complex manifolds is much too big for any
serious attempt of complete classification, it is necessary to impose further condi-
tions. For example E. Cartan classified in [Ca] symmetric homogeneous domains
in C*. Here we will require that X is of small dimension. For dimc(X) = 1
the classification follows from the Uniformization Theorem. In 1962 J. Tits clas-
sified the compact homogeneous complex manifolds in dimension two and three
[Til). In 1979 J. Snow classified all homogeneous manifolds X = G/H with
dimg(X) < 3, G being a solvable complex Lie group and H discrete [SJ1). The
classification of all complex-homogeneous (i.e. G is a complex Lie group) two-
dimensional manifolds was completed in 1981 by A. Huckleberry and E. Livorni
[HL]. Next, in 1984 K. Oeljeklaus and W. Richthofer classified all those homo-
geneous two-dimensional complex manifolds X = G/H where G is only a real
Lie group [OR]. The classification of three-dimensional complex-homogeneous
manifolds was completed in 1985 [W1]. Finally in 1987 the general classification
of the three-dimensional homogeneous complex manifolds was given by in [W2].
The purpose of this monograph is to give the complete proof of the classification
of three-dimensional complex manifolds G/H .

I would like to use this opportunity to thank Alan Huckleberry for his
support and encouragement.

I would also like to thank Wilhelm Kaup, Karl Oeljeklaus and Eberhard
Oeljeklaus as well as the Studienstiftung des Deutschen Volkes and the Deutsche
Forschungsgemeinschaft.
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Chapter 1
Survey

1. Introduction

A complex manifold X is called homogeneous if there exists a connected
complex or real Lie group G acting transitively on X as a group of biholo-
morphic transformations. Our goal is a general classification of homogeneous
complex manifolds up to dimension three as complex manifolds, i.e. we identify
two manifolds if they are biholomorphic. Thus we do not intend to classify all
holomorphic transitive Lie group actions on complex manifolds. We just want
to classify all complex manifolds for which there exists at least one holomorphic
transitive Lie group action.

One should note that there exist complex manifolds which are not homogen-
eous in our sense, i.e. there does not exist any Lie group acting holomorphically
on transitively, but nevertheless the whole group of all automorphisms does act
transitively (see [Ka, p.70] and [W4]).

The classification is done in two steps. First we consider only homogeneous
complex manifolds which are complex-homogeneous, i.e. for which there exists
a complex Lie group acting transitively. Second we discuss those homogeneous
complex manifolds on which only real, but no complex Lie groups act transitively.

On page 21 and 86 diagrams show how the classification is organized.

2. The complete List

The following list covers all homogeneous complex manifolds X = G/H
with dimg(X) <3:

We distinguish the cases G solvable, G mixed and G semisimple. Here
G is mixed means that G has a Levi-Malcev decomposition G = Sx R with
dimg(R) > 0 and dimg(S) > 0, i.e. G is neither semisimple nor solvable.

G complex solvable

(1) Quotients G/T' of solvable complex Lie groups G with dim¢(G) < 3 by
discrete subgroups.

This class contains in particular C*, C* and Tori. These manifolds have
been studied in detail in [SJ1,5]2]. She gives a fine classification of the discrete
subgroups of these solvable Lie groups.



G complex semisimple

(2) Quotients SLy(C)/T" with T’ being a discrete subgroup of SL3(C).

This is a very large class. For ezample let M be an arbitrary Riemann
surface. Then there is a holomorphic action of x1(M) on the universal covering
M of M. Since M ~P,, C, or A,, the universal covering M is equivariantly
embeddable in P;. Thus for any Riemann surface the fundamental group x,(M)
can be embedded in SL3y(C)/Z3 ~ Auto(P)) as a discrete subgroup. For more
informations on discrete subgroups in semisimple Lie groups see [Kra,Mar,Ra,Z].

(3) The following homogeneous-rational manifolds:
a) P, for n <3,
b) the projective quadric Qs and
c) the flag manifold F 3(3) of full flags in C®.

(4) The affine quadric Q; and P3\ Q.

Both are guotients of SL3(C) by reductive subgroups and P2\ Q; ~ Q32/Z,.
Furthermore Q3 is biholomorphic to {(z,w) € Py x Py | 2 # w} and may be
realized as affine bundle over P,. In contrast P;\Q; has no equivariant fibration
at all.

(5) All C*— and Torus—principal bundles over homogeneous rational manifolds.

This class contains in particular C?\ {(0,0)}, C*\{(0,0,0)}, homogeneous
Hopf surfaces and P3\ (L1UL32) where Ly and Ly are two disjoint complez lines
in Ps.

G complex mixed

(6) The non-trivial C* - and torus—principal bundles over P3\ Q; .

The non-trivial C* - and torus—principal bundles over Q3 are also homo-
geneous manifolds, but are already contained in the class SLy(C)/T.

(7) Every line bundle over a homogeneous-rational manifold which is generated
by a positive divisor.
This class contains in particular P, \ {zo}.

(8) Holomorphic vector bundles of rank two over P; which are direct sums of
line bundles generated by positive divisors.

Any vector bundle of rank two over P, is a direct sum of line bundles (see
[GrR, p.237]), but of course not necessarily generated by positive divisors.

The total space of the vector bundle E ~ H' @ H' is P\ L, where L
denotes a complez line in P3. Furthermore E may be realized as ¢ C-principal
bundle over H?. Here H? denotes the 2% power of the hyperplane bundle over
P. .
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(9) Quotients of P3\ L realized as principal bundle over H? by discrete sub-
groups of the structure group.

It is easy to list all these guotients, since it suffices to determine the discrete
subgroups of the one-dimensional structure group.

(10) Every line bundle over Q; and the unique non-trivial line bundle over

P;\Q:.

(11) Quotients of Cx Q3 by discrete subgroups of Zyx (C,+) with the Z;x C-
action on C x Q3 given by

(2] [w), ) = ([2), [w), ¥ + 2)
for (e,z) € Z3x C and

([2‘], [W], ﬂ) b= ([W], [‘]' -y)

for (¢,0), where ¢ denotes the non-trivial element of Z;.
(Hete ([z], [w]) eP,xP \ A~ Qz)

(12) Quotients of C x (C? \ {(0,0)}) by discrete subgroups of C* x C acting by
(A, 2) : (z,v) = (A*z + z,2v)

forkeZ.

(13) Certain C?-bundles over P; which are given by the following transition

functions n
&)
wm=—-—\— wo
z

2o np4n-2 %o i
= () i
231 131
forp>1,n2>1.
Here v; and w; denote fibre coordinates over U; = {[20 : 21] | z: # 0}.
These bundles arise as guotients of SL3(C) x N by a three-codimensional
subgroup where N is a complez nilpotent Lie group with dimc(N/N') = n+1 and
N®) £ {e} = N®+)_ The commutator N’ is abelian and induces a fibration
which realizes these manifolds as affine bundles over H™ where H™ demotes
the n-th power of the hyperplane bundle over Py. These affine bundles have no
holomorphic section and the manifolds have only constant holomorphic functions.
Forn=1 and p=1 the group N is the three-dimensional complez Heisen-

berg group, i.c.
1 z y
N = 1 z)|z,y,2€C},
1

and the affine bundle over H™ = H! is actually a principal bundle. Moreover
for n=p =1 the manifold which arises is biholomorphic to Qs \ L, where Qs
denotes the projective quadric and L an arbitrary complez line in Qs.
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(14) Quotients E/T where E is the C-principal bundle over H! which is con-
tained in the above class for n = p = 1 and T is a discrete subgroup of the
structure group (C,+) acting from the right on E.

(15) Simply—connected C* —principal bundles over H! which are given as a quo-
tient (SL3(C)x N)/H where N is the three-dimensional complex Heisenberg
group, the representation of SL3(C) in Aut(N/N’) is irreducible and

w={(( 2)( 1)) |reeee]

for a € C*.
(16) Quotients of the above principal bundles by discrete subgroups of the prin-
cipal structure group acting from the right.

G real solvable

(17) An irreducible bounded homogeneous domain,

i.e. a ball n
B ={(z1,---,2) EC* | )_ x|’ < 1}
i=1
= {(z1,--,2) €C* | Y |zil” < Re(21)}
=2
and

Q={(z,w,2) €C®| Imz>0 and 4ImzImz>(Imw)?}.

For dim¢(X) < 3 every bounded homogeneous domain is also a hermitian
symmetric space. In the notation of [Hel], B, is a hermitian domain of type
AllI(p=1,g=n) and Q is of type BDI(p=3,9=2) = CI(n=2).

(18) A complement to a bounded domain in its equivariant embedding in C",
ie.

X ~{(21,.--,2n) €C* | Z:Iz.'l2 > Re(z1)}
=2
or
X ~{(z,w,2)€C®| Imz>0 and 4ImzImz < (Imw)?}.
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(19) C?\R? or a covering of this manifold.

The manifold C*\R? is not simply-connected, C?\R? ~ S! x R3. The
unsversal covering C‘T]'Il2 which is diffeomorphic to R* has some interesting
complez—-analytic properties. In particular C’Fﬁt’ is hypersurface-separable (i.c.
for all z,y € @A\_]il2 there ezists a hypersurface H C C"Tﬁ’ such that z €
H3y, [0) b!gt is not meromorphically separable. Actually any meromorphic

function on C2\R? is x1(C?\R?) -invariant. Hence two points in the same fibre
over C2\R? can not be separated.

(20) A quotient of C x (ﬂiu by a discrete subgroup of C x Z acting naturally
(C on C by translations and Z =~ x,(C?\R?) on C?\R? as a group of covering
transformations).

(21) The following domains in C®

Q ={(z,w,2)| Imz>0 and fi(z,w,z)>0}
Q) = {(z,w,2) | fi(z,w,z) > 0}
Q = {(z,w,2) | fa(z,w, z) > 0}
Q3 = {(z,w, 2) | fa(z,w, 2) < 0}

with fy = Imz— RewImz and f; =Imz— RewImz + (Rez)!.

The manifold Qo is particular interesting for its Kobayashi—-reduction.

The Kobayashi-reduction identifies two points in a manifold if their Koba-
yashi-pseudometric is zero (see [Kol, KoS, L] for details about the Kobayashi-
pseudometric in general and [W5] for a survey of the Kobayashi—pseudodistance
on homogeneous manifolds). Now the Kobayashi-reduction of Qg is a fibration

*:G/H2XS G/~ A,

compatible with the complez siructure. In particular the fibre has a non-trivial
Kobayashi-pseudometric. Nevertheless if one takes any open subset U of G/I
then the Kobayashi-pseudometric of x~1(U) degenerates along the fibres.

One can define a “complez-line-reduction” for Qo which identifies two points
z,y € Qo if and only if there is a finite chain of holomorphic maps ¢,,...¢, :
C — Qo with ¢o(0) = z, ¢i(1) = ¢i+1(0) and ¢n(1) =y. Then Qy — N/~ is
a G-equivariant real analytic fibre bundle and all the fibres are closed complez-
analytic subsets of Qo but there is no compatible complez structure on Qo/~.

That Q2 and Qg are not biholomorphic is proved in Lemma 6.6.1. in the
following way: Assume to the contrary that ¢ : Q3 — Q3 is a biholomorphic map.
Obviously ¢ is extendable to the envelopes of holomorphy i.e. to the whole CS.
Then —fa0¢ and f, must define the same boundary. Hence —fy0¢ = Afy for
some positive real-analytic function A\. One obtains a contradiction by writing
down this equation in coordinates and comparing the coefficients of the power
series up lo degree 4.



