Lecture Notes in

Mathematics

C. Graham Th. G. Kurtz S. Méléard
Ph. E. Protter M. Pulvirenti D. Talay

Probabilistic Models
for Nonlinear Partial
Differential Equations

Montecatini Terme, 1995
Editors: D. Talay, L. Tubaro

€)) Springer



C. Graham Th. G. Kurtz S. Méléard
Ph. E. Protter M. Pulvirenti D. Talay

Probabilistic Models
for Nonlinear Partial
Differential Equations

Lectures given at the 1st Session of the
Centro Internazionale Matematico Estivo
(CIME.)

held in Montecatini Terme, Italy,

May 22-30, 1995

Editors: D. Talay, L. Tubaro




Authors Philip E. Protter
Carl Graham Dept. of Mathematics and Statistics

Purdue Universit
AP, URA CNRS 756 y
g]c\:i)]e Polytechnige West Lafayette, IN 47907-1395, USA

F-91128 Palaiseau. France e-mail: protter @ math.purdue.edu
e-mail: carl @ cmapx. polytechique.fr Mario Pulvirenti
Thomas G. Kurtz Dipartimento di Matematica

Dept. of Mathematics and Statistics Universita di Roma "La Sapienza”
University of Wisconsin-Madison 1-00185 Roma, Italy

Madison. W1 53706-1388. USA e-mail: pulvirenti @ sci.uniromal.it
e-mail: kurtz @ math.wisc.edu Denis Talay

: INRIA
Sylvie Méléard
leo\il)eAL'X %FR SEGMI 2004 Route des Lucioles

; sog T s BP 93
U té Paris X
zélévijlde Izr]llsépubhque F-06902 Sophia-Antipolis, France
F-92000 Nanterre. France e-mail: talay @ sophia.inria.fr
afid Editors
. ’ e Denis Talay

Laboratoire de Probabilités INRIA

Université Paris VI )
4, Place Jussieu Luciano Tubaro

F-75252 Paris Cedex 5, France Dipartimento die Matematica
; i Universita di Trento
e-mail: sylm @ ccr.jussieu.fr
Y ! 138050 Povo (Trento), Italy
e-mail: tubaro @ science.unitn.it

Cataloging-Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Centro Internazionale Matematico Estivo <Firenze>: Lectures given at the ... session of the Centro
Internazionale Matematico Estivo (CIME) ... - Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo ; Hong
Kong : Springer

Friiher Schriftenreihe. - Friiher angezeigt u.d.T.: Centro

Internazionale Matematico Estivo: Proceedings of the ... session of the Centro Internazionale Matematico
Estivo (CIME)

NE: HST

1995, 1. Probabilistic models for nonlinear partial differential equations. - 1996

Probabilistic models for nonlinear partial differential equations : held in Montecatini Terme, Italy,
May 22 -30, 1995 / Carl Graham ... Ed.: D. Talay ; L. Tubaro. - Berlin ; Heidelberg ; New York ; Barcelona ;
Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1996
(Lectures given at the ... session of the Centro Internazionale Matematico Estivo (CIME) ... ; 1995,1)
(Lecture notes in mathematics ; Vol. 1627 : Subseries: Fondazione CIME)

ISBN 3-540-61397-8

NE: Graham, Carl; Talay, Denis [Hrsg.]; 2. GT

Mathematics Subject Classification (1991): 60H10, 60H30, 60H15, 60K35, 60K30,
60G07, 65C20, 65M15, 65U05

ISSN 0075-8434
ISBN 3-540-61397-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof
is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for
prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready Tg X out put by the authors
SPIN: 10479756 46/3142-543210 - Printed on acid-free paper



Preface

These last years, there have been important developments in the probabilis-
tic interpretation of nonlinear Partial Differential Equations, the theory of the
convergence of law of stochastic processes and the numerical approximation of
stochastic processes.

All these developments offer the appropriate theoretical background to anal-
yse probabilistic algorithms used to solve equations as important in practice
as the Navier-Stokes equation, the Boltzmann equation and certain Stochastic
Partial Differential Equations. They also permit us to construct new methods.

For example, all the works around the propagation of chaos, particularly
those of A-S. Sznitman, permit a quite new and fruitful point of view on the
random vortex methods in Fluid Mechanics and on Monte-Carlo methods for
Boltzmann-like equations. Likewise, the numerical analysis of stochastic differ-
ential equations has recently progressed in several interesting directions (vari-
ance reduction techniques, simulation of reflected diffusion processes, conver-
gence in law of the normalized trajectorial error, asymptotic expansions of the
discretization error).

Weak limit theorems for stochastic integrals naturally are among the main
ingredients in the study of interacting particle systems, approximation proce-
dures for solutions of stochastic differential equations, etc. A selection of such
theorems in view of the analysis of applied problems should be useful. Besides,
quite new weak limit theorems have just appeared for stochastic integrals with
respect to infinite dimensional semimartingales.

We therefore enthusiastically answered Prof. V. Capasso’s suggestion to
submit to the CIME a proposal for a Summer School on the probabilistic
models for nonlinear PDE’s and their numerical applications with a three-fold
emphasis: first, on the weak convergence of stochastic integrals; second, on the
probabilistic interpretation and the particle approximation of equations coming
from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations);
third, on the modelling of networks by interacting particle systems.

We thank all the participants to this Summer School which was held in
Montecatini from May 22" to May 30t". The exchanges between the lecturers
and the audience were very useful for everybody.

We thank all the lecturers (Carl Graham, Tom Kurtz, Sylvie Méléard, Philip
Protter, Mario Pulvirenti) for having given fascinating lectures and for having
written pedagogic and deep contributions to the present volume.

We hope that this book will be useful for our colleagues working on stochas-
tic particle methods and on the approximation of SPDE’s and in particular,
for Ph.D. students and for young researchers.



Vi

We thank CIME for its generous financial support and for arranging the
location in Montecatini offering us the combined delights of beautiful Tuscan
surroundings and gastronomical excellence.

Sophia—Antipolis and Trento, Denis Talay and Luciano Tubaro
December 1995
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Weak Convergence of Stochastic Integrals and
Differential Equations

Thomas G. Kurtz'* and Philip E. Protter? **

! Departments of Mathematics and Statistics University of Wisconsin - Madison,
Madison, WI 53706-1388, USA

2 Departments of Mathematics and Statistics, Purdue University, West Lafayette,
IN 47907-1395, USA

1. Semimartingales

Let W denote a standard Wiener process with Wy = 0. For a variety of
reasons, it is desirable to have a notion of an integral fol H,dW,, where H

is a stochastic process; or more generally an indefinite integral fot H.,dw,,
0 <t < oo.If H is a process with continuous paths, an obvious way to define a
stochastic integral is by a limit of sums: let 7™ [0, t] be a sequence of partitions
of [0,t], with mesh (7™) = sup;(ti41 — ti), where 0 =t <t;1 < ... <t, =1t
are the successive points of the partition. Then one could define

H,dW, = lim Z Hii(WfH-l - W‘-’) (1'1)

ty€xmion]

when lim,_,, mesh (7™) = 0. If one wants the natural condition that (1.1)
holds for all continuous processes H, then it is an elementary consequence of
the Banach-Steinhaus theorem that W must have a.s. paths of finite variation
on compacts. Of course this is precisely not the case for the Wiener process.
The key insight of K. It in the 1940’s was to ask for condition (1.1) to hold
only for adapted continuous stochastic processes. We will both explain this
idea and extend it to a large class of stochastic processes: exactly those for
which both the integral exists as a limit of sums, and for which we also have
a dominated convergence theorem.

We suppose given a filtered probability space (2, F, P, F), where F is a
P-complete o-algebra and where F = (F;)o<t<oo 18 a filtration of o-algebras:
i.e., Fs C F if s < t. We also assume that Fo contains all the P-null sets of
Fo and that F is right continuous: that is, F; = F;4 = Ny Fy. (Note that if
W is a standard Wiener process with its natural filtration F° = (]:;O)OSt<ooy
where F; = o(W,;s < t), then if one adds the P-null sets of F? to 7, all ¢,
the resulting filtration F satisfies the preceding hypotheses, which are known

* Research supported in part by NSF grants DMS 92-04866 and DMS 95-04323
** Research supported in part by NSF grant INT 94-01109 and NSA grant MDR
904-94-H-2049



2 Thomas Kurtz, Philip Protter

as the usual hypotheses. The same holds for Lévy processes and for most
strong Markov processes.)

Let X be an adapted process with cadlag paths: that is, X; is F;-
measurable, each t > 0, and a.s. has paths which are right continuous with
left limits.!

Definition 1.1. A process H is simple predictable if H has a representation

n
H, = HOI{O)(t) + Z Ht'l(T.‘,THx](t) (1'2)
=1
where 0 = T1 < ... < Tht1 < 00 18 a finite sequence of stopping times,

H; € Fr,, |Hi| < 00 a.s., 0 < i < n. The collection of simple predictable
processes is denoted S.

Let L° denote all a.s. finite random variables. We topologize L° with con-
vergence in probability, and we topologize S with uniform convergence (in
(t,w)) and denote it S,,. For a given X we define an operator Ix mapping S
to L® by (with H as in (1.2)):

Ix(H) = HoXo + an Hy(X7,,, — X1.). (1.3)

=1

Definition 1.2. A process X is a semimartingale if Ix : S, — L° is con-
tinuous on compact time sets.

Definition (1.2) is not customary. We give the customary definition here,
and to distinguish it from ours we call it a “classical” semimartingale.

Definition 1.3. A process X is a classical semimartingale if it is adapted,
cdadldag, and has a decomposition X = M + A, where M is a local martingale,
and A (is adapted, cidlig, and) has paths of finite variation on compacts.

One of the deepest results in the theory of semimartingales is the follow-
ing, proved around 1978, primarily by C. Dellacherie and K. Bichteler.

Theorem 1.4 (Bichteler-Dellacherie). An adapted, cidlig process X is
a semimartingale if and only if it is a classical semimartingale.

We remark that the deeper implication is the “only if”.
Also note that the Bichteler-Dellacherie theorem gives us many ezamples
of semimartingales:

(i) Any local martingale, such as the Wiener process, is a semimartingale.
(ii) Any finite variation process, such as the Poisson process, is a semimar-
tingale.

! “cadlag” is the French acronym for right continuous with left limits
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(iii) The Doob-Meyer decomposition theorem states that any submartin-
gale Y can be written Y = M + A, where M is a local martingale and
A is an adapted, cadlag process with nondecreasing paths. Thus, any
submartingale (and hence any supermartingale) is a semimartingale.

(iv) If Z is a Lévy process (i.e., a cadlag process with stationary and inde-
pendent increments), then if E{|Z;|} < oo, each t, one has E{|Z;|} = at
(assuming Zo = 0) and thus Z; = (Z; — at) + ot is a decomposition for
Z,a nd Z is a semimartingale. More generally it can be shown that any
Lévy process is a semimartingale.

(v) Most “reasonable” real valued strong Markov processes are semimartin-
gales.

(vi) An illustrative example of a Lévy process that is a martingale is as
follows: let N* be a sequence of i.i.d. Poisson processes with arrival in-
tensities a;(a; > 0). Let |8;| < ¢ and assume Y2, B2a; < oo. Then

is a Lévy process. Note that if, for example, o; = 1 (all i) and G = 1
then if AM, = M, —M,_ (the jump at time s), we have }°,_, ., IAM,I =
EO<s<t AM, =372, :N‘ = oo a.s. This is an example of a martingale
that cannot be used, path by path, as a classical differential because of
behavior arising purely from the jumps; that is, M has paths of infi-
nite variation on compacts and one cannot define a Lebesgue-Stieltjes
pathwise integral for M.

Finally let us note some simple but important properties of semimartin-
gales.

Theorem 1.5. The set of semimartingales is a vector space.

Theorem 1.6. If Q ts another probability absolutely continuous with respect
to P, then every P-semimartingale is a Q-semimartingale.

Theorem 1.7 (Stricker). If X is a semimartingale for a filtration F, and
if G is a subfiliration such that X is adapted to G, then X is a G-
semimartingale as well.

Proof. Theorem 1.5 is immediate from the definition. For Theorem 1.6 it is
enough to remark that if Q@ < P, then convergence in P-probability implies
convergence in @ probability. For Theorem 1.7, let S(F) denote S for the
filtration F. Since S(G) C S(F), if Ix is continuous for Ix : Su(F) — LO,
then it is a fortiors continuous for S, (G). a

Stricker’s theorem shows one can easily shrink the filtration since one is
only shrinking the domain of a continuous operator. Expanding the filtration,
on the other hand, is more delicate, since one is then asking a continuous
operator to remain continuous for a larger domain. An elementary result in
this direction is the following:
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Theorem 1.8 (P. A. Meyer). Let A be a countable collection of disjoint
sets in F. Let H be the fillration given by H, = o(F;, A). Then every F
semimartingale is an H semimartingale.

Proof. Without loss of generality assume .4 is a partition of £2, and P(4,) > 0,
each A, € A. Define Q, < P by Qn(A) = P(A|A,). Then X is a Qn-
semimartingale by Theorem 1.6. Let I" be the filtration generated by F and
all Qn null sets. Let X be a (I", Q,)-semimartingale, each n. Moreover F C
H C I™. By Stricker’s theorem, X is an H semimartingale under Q,. Note
that dP = Y7 | P(An)dQ,. Suppose H™ € S(H) converges to H € S(H)
uniformly. Then Ix(H") converges to Ix(H) in Qn-probability for each n,
and it follows that it converges in P-probability as well. Thus X is an (H, P)-
semimartingale. O

2. Stochastic Integration

We wish to define a stochastic integral of the form f(; H,_dX,, where H is
cadlag, adapted, and H,_ represents its left continuous version; and X is a
semimartingale. We recall S is the space of simple predictable processes and
L is the space of finite valued random variables.

We also define:

D = the space of adapted processes with cadlag paths
L = the space of adapted processes with cadlag paths (left continuous with
right limits)
Note that if H € D, then H_ (its left continuous version) is in L; and if
H € L, then H; is in D. We next define a new topology, ucp, which will
replace uniform convergence.

Definition 2.1. A sequence of processes Y™ converges to a process Y uni-
formly on compacts in probability (denoted ucp ) if for each t > 0,
sup,<; |Y;* — Ys| = (Y™ = Y); tends to 0 in probability as n tends to co.

We note that this topology is metrizable.
Theorem 2.2. S is dense itn L under ucp.

Proof. By stopping, bL is dense in L, where bL denotes the bounded processes
in L. For Y € bL, let Z =Y, and for € > 0, define T§ = 0 and

Toyy =inf{t: t > T; and |Z, — Z7¢| > €}.

Then T} are stopping times and they are increasing since Z is cadlag. Pose
Z; =Yolio) + Z:;l Zrs l(T:An,T‘_-“A,,]. This can be made arbitrarily close to
Y € bL by taking € small enough and n large enough. O
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The operator Ix defined in (1.3) was, effectively, an operator giving a
definite integral for processes H € S and semimartingales X. We now wish
to define an operator which will be an indefinite integral operator. Thus
its range should be processes rather than random variables. Therefore for a
given process X and a process H € S as given in (1.2) we define the operator
Jx : S — D by:

Jx(H) = HoXo + ) Hy(XTi+ — XT5), (2.1)
i=1
where the notation X7, for a stopping time T, denotes the process XTI =
XgAT(t 2 0).

Definition 2.3. For an adapted, cidlig process X and H € S, the process
Jx(H) is called the stochastic integral of H with respect to X .

We will also use the notations f(: H,dX, and H - X or H - X; to denote
the stochastic integral. That is

Jx(H) :/de =H-X
t

Ix(H), :/ H,dX, =H-X,.
0

Theorem 2.4. Let X be a semimartingale. Then Jx : Sycp — Ducp is
continuous.

Proof. Suppose H* € S tends to H uniformly. By linearity, we can sup-
pose without loss H* tends to 0. Let T* = inf{t : |(H* - X);| > 6}. Then
H"l[o'Tu] € S tends to 0 uniformly as k tends to oo. Thus for every ¢

P{(H*-X); >6} < P{|H*  Xgrn|> 6}
= P{|(H*1p 15 - X):| > 6}
= P{|Ix(H*1;o.rxpy)| > 6}

which tends to 0 by definition because X is a semimartingale. Therefore Jx :
Sy — D ycp is continuous. We next show Jx : Sycp — Dycp is continuous.
Let 6 > 0,¢ > 0,t > 0. We now know there exists n such that ||H|l, < n
implies P(Jx(H); > 6) < €/2. Let R* = inf{s : |[H*¥| > n}, and set H* =
H*1(0,R,)1{Ry>0}- Then H* € S and ||H*||, < 7 by left continuity. When
R* >t we have (H* - X); = (H*- X)?, whence

P((H*-X); >6) <P ((H* X)6) + P(R* <1)
<e/2+ P((H'); > )
<eg,

if k is large enough, since lim;_, o, P((H*); > 1) = 0. ]
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Definition 2.5. Let X be a semimartingale. The continuous linear mapping
Jx : Lucp — Ducp obtained as the extension of Jx : S — D is called the
stochastic integral.

Suppose H is a process in D. We can write the stochastic integral H,_ -
X = (fot H,_dX,);>0 as defined above, as a limit of sums. Let o denote a
finite sequence of stopping times:

0=To<T1<...<Tp < o0 as. (2.2)

Such a sequence is called a random partition. A sequence of random par-
titions o,

oo s TP ATP £ .. £ T
is said to tend to the identity if

(1) lim, sup; T* = oo a.s.
(ii) ||lon|| = sup; |T7,, — T7*| converges to 0 a.s.

For a process H and a random partition o as in (2.2) we define

k
H® = Holyoy + Z Hr Y1, T:41) (2.3)
=1
Thus if H is in L or D, we have
t k
/ H{dX, = HoXo + )  Hr(XT+ — XT). (2.4)
o i=1 :

Theorem 2.6. Let X be a semimartingale and let H € D. Let (0n)n>1 be a
sequence of random partitions tending to the identity. Then

n

s — i - T _ [
H_ X_nan;oZHT‘ (XTH — XTT)
13

with convergence in ucp .
Proof. Let H* € S converge to H in ucp. Then

(H. —H°*)-X = (H_ — H*)- X + (H* - (H%)°~)- X + ((H})"~ - H°")- X.

(2.5)
The first term on the right side of (2.5) equals Jx(H_ — H*), which goes
to 0 because Jx is continuous on L ,cp. The same applies to the third term
for fixed k as n tends to oco. Indeed, (Hi)"“ — H°~ tends to 0 as k — oo
uniformly in n. As for the middle term on the right side of (2.5), for fixed k
it tends to 0 as n tends to co. Thus one need only choose k so large that the
first and third terms are small, and then choose n so large that the middle
term is small. |
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Theorem 2.6 gives an appealing intuitive description of the stochastic
integral as a limit of Riemann-type sums. Of course one can only do this
because of the path regularity of the integrands.

Let us next note some simple and quite nice properties of the stochastic
integral. H will be assumed to be in D, and X a semimartingale in Theo-
rems 2.7 through 2.11.

Theorem 2.7. If X has paths of finite variation a.s., then H_ - X agrees
with the Lebesgue-Stieltjes integral, denoted [, ; H,_dX,.

Proof. The result is evident for H € S. For H € D, let H™ € S converge
to H_ in ucp. Then there exists a subsequence ny such that H™* converges
uniformly on compacts a.s. to H_ - X. Since the convergence is uniform,
J.s H*dX, converges as well to [, ; H,_dX,, whence the result. O

Recall that for a process Y € D, AY; = Y; — Y;_, and AY denotes the
process (AY;)o<t<oo- An important feature of the stochastic integral is that
the jumps behave “correctly” — that is, in the same manner as they do for the
Lebesgue-Stieltjes integral. This is part of the reason we use L, rather than,
for example, D, as our space of integrands. (See Pratelli [14] or Ahn-Protter
[1] for more on this subject.)

Theorem 2.8. The jump process A(H_ - X), is indistinguishable? from the
process H,_AX,.

Theorem 2.9. Let Q < P. Then H_g-X is Q-indistinguishable from H_p-
X.

Theorem 2.10. Let P and Q be any two probabililies and X a semimartin-
gale for each. Then there ezists H_ - X which is a version of both H_p - X
and H_q-X.

Theorem 2.11. Let G be another filtration and suppose H € D(G)ND(F),
and that X is semimartingale for both F and G. Then H_g- X = H_g-X.

Proof. For Theorem 2.8 and 2.9, the result is clear for H € S and follows
for H_ with H € D by taking limits in ucp (convergence in P-probability
implies convergence in Q-probability). For Theorem 2.10, let R = (P + Q),
and apply Theorem 2.9. For Theorem 2.11, we can use the construction in
the proof of Theorem 2.2 to approximate H € D constructively from H; thus
the approximations H™ € S are in S(F) N S(G); the result is clearly true for

H in S and thus it follows by again taking limits. O
Theorem 2.9 can be used to show that many global results also hold
locally.

We give an example.

2 Two processes Y and Z are indistinguishable if P{w : t —» Yi(w) # t —
Zt(w)} =0.
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Theorem 2.12. Let X,Y be two semimartingales and H, J be two processes
in D. Let

"A={w: H(w)=J(w) and X.(w) =Y.(w)}
where H.(w) denotes the path of H :t — Hy(w). Let
B = {w : X.(w) is finite variation on compacts}.
Then H_-X =J_-X onAas,and H.-X = [,  H,_dX on B a.s.

Proof. Without loss of generality assume P(A) > 0. Define a new Q by

Q(A) = P(A|A). Then H_ = J_ and X =Y under Q. Note that X and Y

are also semimartingales under Q. Thus H_g-X = H_p - X, and one need

only apply Theorem 2.9. The second assertion is a combination of the above

idea with Theorems 2.7 and 2.9. O
The next result is quite important.

Theorem 2.13. Let H € D and X be a semimartingale. ThenY = H_ - X
s again a semimartingale. Moreover if G € D as well, then

G_-Y=G_-(H_-X)=(GH)_-X.

Proof.If G, H € S, then clearly Y = H_-X is a semimartingale,and Jy (G) =
Jx(GH). The associativity property extends to H_, G_ with G, H € D by
continuity. Therefore it remains only to show Y = H_-X is a semimartingale.
By taking subsequences if necessary, assume H™ € S converges to H_ in ucp
and also H™ - X converges a.s. to H_ - X. For G € S, Jy(G) is defined for
any process Y and hence makes sense a priori. Thus

Jy(G) = lim G-Y" = lim G-(H" - X)

n— oo

= lim (GH™)- X = Jx(GH.),
n— 00
since X is a semimartingale. Next let G™ converge to G in S,. We wish to

show Iy (G™) converges to Iy (G). But
lim Jy(G") = lim Jx(G"H_) = Jx(GH_)

n— 00 n— 00

since G™ H_ converges to GH_ in ucp. Then since Jx(GH_) = Jy(G) we
have the result. O

3. Quadratic Variation

A process which plays a key role in the theory of stochastic integration is the
quadratic variation process. We define it using stochastic integration:



