MICIO

COMPUTER

D@KS




PASCAL
FOR THE IBM

PERSONAL
COMPUTER

TED G. LEWIS

A
vy
Addison-Wesley Publishing Company
Reading, Massachusetts « Menlo Park, California

London ¢ Amsterdam ¢ Don Mills, Ontario = Sydney




This book is in the
Addison-Wesley Microcomputer Books
Popular Series

Marshall Henrichs, Cover Design

UCSD Pascal is a registered trademark of the University of California; IBM, IBM PC, IBM PC
DOS, and IBM PC Pascal are trademarks of International Business Machines, Inc.

Library of Congress Cataloging in Publication Data

Lewis, T. G. (Theodore Gyle), 1941-
Pascal for the IBM Personal Computer.

(Addison-Wesley microcomputer books popular series)

Includes index.

1. IBM Personal Computer—Programming. 2. PASCAL (Computer program language) I. Ti-
tle. IL Title: Pascal for the .B.M. personal computer. IIL. Series.
QA76.8.12594L.46 1983 001.64°2 82-22750
ISBN 0-201-05464-7

Copyright @ 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

ISBN 0-201-05464-7
ABCDEFGHIJ-HA-89876543



PREFACE

Why would anyone write another book on Pascal? There are several
compelling reasons why I wrote this book. First, the IBM Personal
Computer provides a new vehicle for people to learn about computer
operation. This means learning the extended character set of the ma-
chine, its operating system, and, in the context of this book, a new
programming language such as IBM Pascal. Specifically, IBM Pascal
incorporates many nonstandard features not found in other versions of
Pascal. IBM Pascal, an extended dialect of ISO Standard Pascal, in-
cludes the new control structures otherwise, break, cycle, and then, or
else, and return, and the new data types for systems programming
word, byte, adr, and ads. The notion of data abstraction is pushed a
small step forward by the implementation of super arrays, which alle-
viate some of the restrictions on passing arrays to subprograms.

Second, there is a generation of Pascal programmers who have
been using UCSD Pascal on the Apple II, North Star, and other micro-
computers. These programmers are now beginning to shift to the IBM
Personal Computer because of its larger memory and other features
and need to know the similarities and differences between UCSD Pas-
cal and IBM Pascal. For this group, I have included many sections on
UCSD Pascal. If you are one of these people, you will also be especially
interested in the way IBM Pascal handles separately compiled units
(Chapter 18).

Third, there are many new people entering the computer field
each year who are in need of a definitive treatment of programming
languages such as Pascal. Pascal is a relatively sophisticated family of
languages and is not easy to learn. I have tried to break the language
down into easily understood parts; each chapter describes an impor-
tant part of both IBM and UCSD Pascal. Both versions of Pascal run on
the IBM Personal Computer. Therefore, if you are undecided about
which translator to buy, then read Chapter 1 carefully. Your decision
is an important one because of the differences between the two lan-
guages.



My approach in this text is to start out with many examples that
will coax you into using the computer as soon as possible. The chapters
become increasingly advanced as you move from beginning to end, the
last chapter showing the full power of UCSD Pascal in implementing
real-life programs. These programs, which are ready to be compiled
and run, ordinarily would cost you several times the price of this book
if you were to buy them separately—they are listed in the chapters for
you to copy, modify, read, etc. These programs may be purchased on
diskette, but you can easily enter them manually into your IBM Per-
sonal Computer.

I am indebted to many people for their help and guidance in this
project. Tom Bell and Tom Dwyer at Addison-Wesley were great to
work with. Kent Byerley at Computerland gave free advice on hard-
ware and software problems. Abbas Birjandi, Edmund Wu, and Larry
England contributed many programs that appear in the book. Ann Puig
and Donna Lee Norvell-Race gave me the benefit of their expertise in
manuscript preparation. Thanks to these people, the book was com-
pleted in a timely manner, and its effectiveness was enhanced.

Corvallis, Oregon T.G.L.
August 1983



Other books in the Microcomputer Books Series are
available from your local computer store or bookstore.
For more information write:

General Books Division
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts 01867

(617) 944-3700

(10341) Pascal: A Problem Solving Approach
Elliot B. Koffman

(03115) A Bit of BASIC
Thomas A. Dwyer and Margot Critchfield

(01589) BASIC and the Personal Computer
Thomas A. Dwyer and Margot Critchfield

(05247) The Little Book of BASIC Style
John M. Nevison

(05248) Executive Computing
John M. Nevison

(06192) The Computer Image
Donald Greenburg, Aaron Marcus, Allan Schmidt, and Vernon Gorter

(10158) Pascal from BASIC
Peter Brown

(10243) Executive VisiCalc for the IBM Personal Computer
Roger E. Clark

(06577) Pascal for BASIC Programmers
Charles Seiter and Robert Weiss

(16455) The Addison-Wesley Book of IBM Software 1984
Robert Wells, Sandra Rochowansky, and Michael Mellin

(13047) 1-2-3 Go!
Julie Bingham

(10256) A Guide to the Best Business Software for the IBM PC
Richard C. Dorf

(08848) The Business Guide to the UNIX System
Jean Yates, Sandra Emerson, James Talty, and Rebecca Thomas

(08847) The Business Guide to the XENIX System
Rebecca Thomas, Jean Yates, Sandra Emerson, Joe Campbell, and James Talty

(06896) The IBM PC from the Inside Out
Murray Sargent Il and Richard L. Shoemaker



CONTENTS

Chapter 1
INTRODUCTION TO PASCAL ON THE
IBM PERSONAL COMPUTER 1
IBM Pascal 2
UCSD Pascal 2
A Comparison of System Requirements 4
A Comparison of Language Features 5
Self-Study Questions 9
Chapter 2
HOW TO USE PASCAL COMPILERS 11
Using the IBM Pascal Compiler 11
Using the UCSD Pascal Compiler 18
Self-Study Questions 26
Chapter 3
WHAT IS A PASCAL PROGRAM? 29
The Program Heading 30
The Program Body 30
Simple Output 32
Self-Study Questions 35
Chapter 4
WHAT ABOUT SIMPLE DATA? 37
Program Variables and Types 37
The const Statement 40
The var Statement 41
Some Examples 42
The Notion of Type, Revisited 45
Self-Study Questions 46
Chapter 5
OPERATIONS ON SIMPLE TYPES 49
The Assignment Operation 50
Integer Operations 51
Real Operations 56



The Mixed-Mode Problem 57

A Final Example 60
Self-Study Questions 62
Chapter 6
THE PASCAL ASSIGNMENT STATEMENT 65
We Call It a Factor 66
We Call It a Term 67
We Call It a Simple Expression 67
Some Evaluations of Expressions 69
A Payroll Program 71
Self-Study Questions 75
Chapter 7
THE ORDINAL DATA TYPES 77
Booleans 78
Characters (char) 86
Enumerated Scalars 89
Ordinal Subrange Types 91
Using the Special (Extended) Characters 93
Self-Study Questions 94
Chapter 8
A LITTLE BIT OF INPUT/OUTPUT 97
read versus readln 98
write versus writeln 99
Input/Output of Booleans 99
Input/Output of Characters 101
Input/Output of Integers 103
Input/Output of Reals 103
Input/Output of Scalars 106
A Short Diversion to the Printer 107
Self-Study Questions 110
Chapter 9
MAKING DECISIONS WITH CASE AND IF 113
The case Statement 114
Making Two-Way Decisions with if 122
Simulating a Generalized case Statement 128
Partial Boolean Evaluation (IBM Pascal) 129
Self-Study Questions 130
Chapter 10
LOOPING WITH FOR, WHILE, AND REPEAT 133
A Counting Loop: for 134
The while Loop 141
repeat-until Looping 146



Nested Loops 149

Partial Boolean Expressions (IBM Pascal) 150
break and cycle Statements (IBM Pascal) 152
Self-Study Questions 154
Chapter 11
INTERNAL FUNCTIONS AND PROCEDURES 157
What Is a Function? 158
What Is a Procedure? 160
Data: Global and Otherwise 161
Side Effects 167
Parameters 169
Read-Only Variables (IBM Pascal) 172
Some Examples of Procedures and Functions 172
A Final Note on Functions 174
Self-Study Questions 175
Chapter 12
STRUCTURED TYPES: ARRAY AND TYPE 177
What Is an Array? 178
The type Statement 179
Input/Output with Arrays 182
Array Searching 184
Two-Dimensional Arrays 186
Super Arrays (IBM Pascal) 189
Packed Arrays 191
Self-Study Questions 194
Chapter 13
STRUCTURED TYPES: RECORD AND WITH 197
What Is a Record? 198
The with Statement 203
Variant Records 205
A Challenge for the Reader 211
Self-Study Questions 212
Chapter 14
STRUCTURED TYPES: SETS 215
What Is a Power Set? 216
Set Operations 218
Input/Output with Sets 227
Self-Study Questions 229
Chapter 15
STRUCTURED TYPES: STRINGS 231
IBM Pascal Strings 232
UCSD Pascal Strings 244



Self-Study Questions

249

Chapter 16
INPUT/OUTPUT OF FILES 251
How Files Work in Pascal 253
File Decisions 256
UCSD Files 270
Self-Study Questions 271
Chapter 17
DYNAMIC DATA: POINTERS 273
Pointers 274
Memory Allocation 276
Deallocation of Memory 281
IBM Pascal Pointers adr and ads 287
Self-Study Questions 287
Chapter 18
SEPARATELY COMPILED UNITS 289
IBM Pascal Units 290
UCSD Pascal Units 299
Self-Study Questions 305
Chapter 19
ERROR HANDLING 307
Kinds of Errors 308
IBM Pascal Error Handling 309
UCSD Pascal Error Handling 315
Self-Study Questions 322
Chapter 20
APPLICATIONS 325
Sorting Files 325
Educational Drill 335
Mailing Lists 340
An Appointment Calendar 351
Client Billing 362
Appendix A: IBM Pascal Reserved Words 372
Appendix B: IBM Pascal Predefined Identifiers 374
Appendix C: Intrinsics of IBM Pascal 376
Appendix D: IBM Pascal Compiler Error Messages 380
Glossary 399
Index 404

viii



CHAPTER

a4 )

INTRODUCTION
TO PASCAL ON THE
IBM PERSONAL

COMPUTER

This book is about Pascal programming on the IBM Personal Computer.
In the chapters that follow, you will be gradually introduced to the
power and flexibility of two Pascal dialects. The IBM Pascal dialect is
an extension to the ISO (International Standards Organization) stan-
dard Pascal that emphasizes the “systems” features needed for ma-
chine-level programming. You can think of these extensions as a type
of high-level assembly language. The UCSD Pascal dialect is an exten-
sion to the ISO standard Pascal that emphasizes the needs of applica-
tion programming. You can do extended arithmetic, graphics, and
screen editing programs with the UCSD Pascal dialect.

Unfortunately, this simple division between these two dialects is a
gross oversimplification. Both languages can be applied to systems pro-
gramming, and with the addition of some assembly language routines,
both can be used for application programming. To really understand



PASCAL FOR THE IBM PERSONAL COMPUTER

the differences, you will have to read the remaining chapters. But for a
quick overview, we can examine these two languages in the large.

IBM PASCAL

IBM Pascal was developed by Microsoft, Inc., to be a highly efficient,
optimized code translator. Considerable effort went into making pro-
grams run fast after being compiled into machine language. One conse-
quence of this improved efficiency is that three passes are made over
your original source program in order to translate it into machine lan-
guage. An IBM Pascal program is translated into machine instructions
that execute under the IBM DOS operating system. The result is a
machine-language program that can be combined with other machine-
language programs. Once translated, an IBM Pascal program cannot be
distinguished from any other machine-language program.

Not only does the IBM Pascal compiler make three time-consum-
ing passes over your source program, but it also requires 128K of main
memory. You should keep this memory requirement in mind if you
have not yet purchased a machine with that much capacity.

An IBM Pascal object program (machine-language version of your
program) usually requires approximately 25K of run-time support rou-
tines. A run-time support routine is a subprogram that resides in mem-
ory while your program is running. It helps your program do input and
output (I/0), arithmetic, and so on.

UCSD PASCAL

UCSD Pascal was developed at the University of California at San
Diego under the guidance of Dr. Kenneth Bowles. Later it was licensed
to SofTech Microsystems for commercial distribution. The original
version has evolved to version IV, which runs on the IBM Personal
Computer and on many other microcomputers.



CHAPTER 1 INTRODUCTION TO PASCAL ON THE IBM PERSONAL COMPUTER

One of the strong features of the UCSD Pascal language is that it is
part of a portable operating system called the p-system. The p-system
includes a filer for managing disk files, an editor for composing pro-
grams, and translators for converting assembly-language programs,
FORTRAN programs, and UCSD Pascal programs into executable in-
structions.

Portability is obtained at a price, however, because programs in the
p-system are translated into p-code, not machine language. A p-code
program is a program containing hypothetical machine-language in-
structions called p-code instructions. These p-code instructions are
more compact than native machine-language instructions, but they ex-
ecute more slowly. The entire p-system will execute on a 64K machine;
thus only 64K of memory is required. The p-system interprets p-code
programs in much the same way as a BASIC interpreter directly exe-
cutes BASIC instructions. The p-code interpreter, sometimes called a
p-code simulator, simulates a p-code machine. The p-code simulator is
a machine-language program. The p-system runs UCSD Pascal pro-
grams much more slowly than they would run if they were translated
into machine instructions. Thus the price of portability is slower exe-
cution of your program.

Version IV of the UCSD p-system includes a native-code generator,
which can translate most p-code instructions into equivalent machine-
language instructions. Since the translation is not 100% complete, you
must continue to run your programs under the p-system. The advan-
tage of native-code translation, however, is increased speed. Much (not
all) of the lost performance speed is regained, but the resultant pro-
gram is considerably larger. So, you must decide which is more impor-
tant to you: size or speed. (You can selectively translate subprograms
into native code.)

The UCSD Pascal compiler does its translation in one pass. This
means you can expect fairly quick translations. Very little in the way
of run-time support is needed by your p-code program because the
run-time support routines are built into the p-code simulator.

Portable p-code programs can be run on any microcomputer that
has the p-system software. For the software developer, this means that
once a program is written for the IBM Personal Computer, it will also
run on a number of other microcomputers.



PASCAL FOR THE IBM PERSONAL COMPUTER

A COMPARISON OF SYSTEM REQUIREMENTS

Table 1.1 summarizes the differences between UCSD and IBM Pascal
system requirements. This is a very broad comparison, but it does tell
you what kind of hardware you will need in either case.

TABLE 1.1 System Requirements of the Two Pascal Dialects

IBM UCSD
Diskettes to compile 3 1
Manuals 1 2 (language only)
Memory required 128K 64K
Disk drives recommended 2 2
Number of printers supported up to 2 up to 1
Display black-and-white black-and-white
or color or color
Operating system DOS p-system

The IBM dialect requires three diskettes, one for each of its three
passes. Since the UCSD version is a single-pass compiler, it requires
only one diskette. Both versions can run on a single diskette system
(especially on double-sided drives), but this is not recommended.

Notice the difference in main memory requirements. The UCSD
p-system is very compact, but your Pascal programs may be very
large. Therefore, you may need 128K of main memory in either case.
This memory difference should not be a consideration in choosing one
version of Pascal over the other. You will soon find that 128K is desir-
able for all but the most trivial programming.

Both dialects support the monochrome display and the color
adapter. However, UCSD Pascal includes turtlegraphics, a library of
programs that allows you to do color and black-and-white graphics. If



CHAPTER 1 INTRODUCTION TO PASCAL ON THE IBM PERSONAL COMPUTER

you plan to do graphics at all, the UCSD Pascal language is the best
choice.

Programs written for DOS can be easily transferred to other IBM
Personal Computers running under control of DOS. However, pro-
grams written for the p-system can run on any other computer under
control of the p-system. (A licensing fee allows you to distribute the
p-system with your programs.) _

If you plan to do system-level programming and you want machine-
language object programs as your final result, then the IBM Pascal
system is probably your best choice. What you must remember is that
you are trading portability for performance.

A COMPARISON OF LANGUAGE FEATURES

Standard (ISO) Pascal is very similar to the original language invented
by Niklaus Wirth. The original language was designed to help students
learn proper programming skills and to be easily implemented on a
variety of computers. These priorities have long since been forgotten in
the rush toward modern structured programming languages. Most
“real-world” versions of Pascal go beyond the pedagogical standard.
They attempt to do everything that a professional programmer wants
of them. IBM Pascal and UCSD Pascal are no exceptions. Table 1.2
summarizes the overall features of these two dialects of Pascal.

Both languages support character strings as a built-in data type.
IBM Pascal actually supports two kinds of strings: an Istring (length
string) and a simple string. An lIstring can vary in length, whereas a
simple string cannot. The UCSD string and the IBM lIstring are similar.

Both languages support string-processing intrinsic functions. An
intrinsic function is a built-in function. IBM Pascal is a little confusing,
however, because of its Istring and simple-string data types. These are
covered in great detail in later chapters.

Graphics (turtlegraphics) and sound reproduction are supported by
a library of pretranslated routines in UCSD Pascal. You should use
UCSD Pascal if you plan to program applications in music, games, or
graphic design.



PASCAL FOR THE IBM PERSONAL COMPUTER

TABLE 1.2 Features of the Two Pascal Dialects

IBM UCSD
Strings yes yes
Graphics no yes
Sound no yes
Units (separate compilation) yes yes
Modules (separate compilation) yes no
Concurrent processes no yes
Program chaining no yes
Direct files yes yes
Systems programming yes no
Packed data no yes
Initial values yes no
Structured constants yes no
Conrol break yes yes
Control cycle yes no
Case-otherwise yes no
Procedures as actual parameters yes no

IBM Pascal does not directly support screen cursor control, but a
machine-language routine for this operation is included in this book.
The UCSD language, on the other hand, includes the intrinsic function
GOTOXY for cursor control.

Both languages support separately compiled subprograms. A unit
is a cluster of procedures, functions, and data that can be separately
compiled, stored on disk, and then linked into any other program.
Units can be useful when one is building large systems. IBM Pascal
modules are also separately compiled programs. They are similar to
units.



CHAPTER 1 INTRODUCTION TO PASCAL ON THE IBM PERSONAL COMPUTER

UCSD Pascal provides a way for you to dynamically overlay pieces
of a large program into memory. This means you can run programs
that are too large to fit into memory in one piece. This feature may be
an important one to consider if you plan to build very large programs.
If so, then the UCSD Pascal language may be your only choice.

UCSD Pascal also provides concurrent processes. A concurrent
process is a program that executes side by side with another program.
Both programs execute in short bursts—first one and then the other.
For example, you might want to write a program that will print the
contents of a file while another program is doing word processing (on
another file). The print program is called a spooler, and it executes in
short bursts in between the times the word-processor program is exe-
cuting. The spooler and the word-processor program are part of a sys-
tem of (two) concurrent processes. Since it provides a way for you to
write concurrent programs, UCSD Pascal may be a better language for
you to use for systems programming than IBM Pascal. In fact, if you
want to learn more about concurrency in computer systems, use UCSD
Pascal.

Both languages exceed the ISO standard for file processing. A
direct-access file is a file containing data that can be directly accessed
in one “seek” to the diskette. This feature is essential in most data-
processing applications. Because of its importance, a full chapter of this
book is devoted to this topic.

IBM Pascal includes extensions to ISO Pascal for doing systems
programming. In particular, IBM Pascal includes bit-level data types,
byte and word, that let you access binary-encoded cells in memory.
Other data types allow you to control the memory segmentation regis-
ter of the 8088 processor, and so forth. These features break down the
strong typing of Pascal so that you can do mixed-type operations on
memory.

UCSD Pascal allows you to compress data into the smallest possi-
ble memory space. This packed attribute causes data to be squeezed
into memory in the most efficient way possible. IBM Pascal, on the
other hand, does not pack data. Remember, the goal of IBM Pascal is to
be fast and efficient. If you want packed data, then you must pack it
yourself using the system-level data types.

UCSD Pascal provides an exit procedure that lets you break out of
a procedure or program before reaching the end. This is an “early
termination” intrinsic that is useful in structured programming.



