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Introduction

Spaces of orderings, introduced by the Author in the series of papers [53-
56] [58], provide an abstract framework for studying orderings on fields and
the reduced theory of quadratic forms over fields. All the main results of
the theory, e.g., the isotropy theorem [10] [13] [26] [76], the representation
theorem for the Witt ring [10] [26], and the structure theory for finite chain
length spaces and fans [14] [15] [31], hold for spaces of orderings.

Spaces of orderings also occur naturally in other more general settings. In
(32] and [85] (also see [59]) it is proved that orderings on skew fields satisfy
the axioms for spaces of orderings. This has been extended to ternary fields
(also called planar ternary rings); see [40]. In [42] (also see [87]) the maximal
orderings on a semi-local ring are shown to form a space of orderings.

The axioms for a spaces of orderings have also been generalized in various
ways, to quaternionic schemes [57] [70] (also see [35]) (an attempt to axiom-
atize the non-reduced theory of quadratic forms over fields), and to spaces
of signatures of higher level [59] [73] [75] (an attempt to axiomatize Becker’s
orderings and signatures of higher level on fields).

Recently, a new sort of generalization has been found which is global in
nature and really quite interesting. In [23] and [5], Brocker and Andradas,
Brocker, and Ruiz generalize the space of orderings axioms O; — Oy, defining
more general objects called abstract real spectra (also called spaces of signs
in [5]), and show that these provide an abstract framework for studying or-
derings on a commutative ring. Any abstract real spectrum has prime ideals,
and each prime ideal has associated to it a so-called residue space which is,
in fact, a space of orderings. Various local-global properties can be proved.
For example, the main results on minimal generation of constructible sets (in
particular, the results on minimal generation of basic open sets) [21] [22] [52]
[62-65] [80] hold in any abstract real spectrum.

These present notes evolved gradually, starting out initially as a long
paper presenting new results in the theory of abstract real spectra. At a
certain point it was decided that the material was important enough that it
deserved a proper presentation to make it accessible to a wider audience. This
led to the inclusion of introductory material on orderings on fields and rings as
well as introductory material on spaces of orderings. At the same time as this
was being done, more structure results for abstract real spectra were being



2 Introduction

obtained and new much simpler axioms were discovered and the equivalence
of these axioms with Brocker’s original axioms was proved. Finally, near the
end, it was pointed out by several people that these notes would be used as
a standard reference not only for abstract real spectra, but also for the older
theory of spaces of orderings. At this point additional material on spaces of
orderings was included to make it more or less complete in this regard also.

It 1s also worth mentioning that, as the final touches were being applied
to this manuscript, it was discovered that orderings on general noncommu-
tative rings also satisfy the axioms for abstract real spectra [71]. The precise
meaning of this result remains to be determined, but it does indicate that
the abstract concept has some wider application. This application to non-
commutative rings is not discussed here.

The goal of these notes then, is to introduce the reader to spaces of or-
derings and abstract real spectra and, at the same time, to develop enough
of the associated field theory and commutative ring theory to provide moti-
vation. An attempt is made to keep the presentation self-contained and at a
reasonable level for the beginner but, at same time, the reader is expected to
know elementary facts about ordered fields and valuations, and elementary
commutative ring theory.

Spaces of orderings are introduced in Chap. 2. We start with the simple
axioms for spaces of orderings (we call them AX2, AX2, AX3) given in the
general context of spaces of signatures of higher level in [59]. The idea on
which these axioms are based can be found implicitly already in [57] [70].
These axioms very natural and elegant, and also they have the advantage
of being easily verified in the field situation. In this way, the presentation is
self-contained, not depending on quadratic form theory [46] [79].

The results on fans and the representation theorem and the stability index
(see [55]) are presented in detail in Chap. 3. Considerable effort is made to
explain what these results mean in the field case; see Sect. 3.5 and 3.6. The
deeper results on existence of P-structures, structure of connected compo-
nents, structure of spaces of orderings of finite chain length, and the isotropy
theorem (see [56]) are presented in Chap. 4. The proofs in the field case are
easier and also quite enlightening, so are covered first in Sect. 4.4. Note how-
ever that the deeper results in Chap. 4 are not needed until later, at the end
of Chap. 7 (in Sect. 7.7) and in Chap. 8.

In Chap. 6, we give a detailed exposition of the basic theory of abstract
real spectra. The axioms we use are also referred to as AX1, AX2, AX3 (see
Sect. 6.1) since they generalize directly our axioms for a space of orderings.
Like the axioms for spaces of orderings, they are very natural and elegant and
are easily verified in the ring situation. There are other axioms as well which
are natural enough, and these are also considered. In Sect. 6.7 we consider
certain alternate axioms called (), (8), (v), (6) which generalize the axioms
O1 — O4 given in [53-56, 58]. In the last chapter, in Sect. 8.2 we consider
Brocker’s axioms [5] [23]. These also generalize O; — O4 but in a different



Introduction 3

way. One of the main contributions of these notes is to show (and it is highly
non-trivial) that these various definitions of abstract real spectra are, in fact,
equivalent. This provides strong evidence that the concept is the right one
(or at least close to the right one).

The most important application of the theory to date is in the “geometric
case” to minimal generation of semi-algebraic sets in real algebraic varieties,
and this is really quite beautiful. This is mentioned briefly here, in Chap. 7,
in the general context of minimal generation of constructible sets. The focus
here is always on the abstract treatment; i.e., we work with constructible
sets in abstract real spectra. The reader should see [3] [5] [22] [27] [52] [80]
for more concrete treatments of minimal generation of semi-algebraic sets.
For the minimal generation of basic open sets, the treatment in [27] [52] is
certainly the most elementary. Also, see [4] and [5] for the application to
minimal generation of semi-analytic sets. .

It 1s worthwhile making a few additional comments about Chap. 8. Ab-
stract real spectra of finite chain length are classified in Sect. 8.5. This allows
one to build a lot of abstract examples. In fact, we get “too many” examples.
In Sect. 8.6 we give an additional property of real spectra in the concrete
(commutative) ring situation which does not hold in general in the abstract
situation. In Sect. 8.7 we give an abstract characterization of those abstract
real spectra of finite chain length which are realized as real spectra of rings.
The work of Delzell and Madden [33] shows that an abstract real spectrum
can also fail to be realized as the real spectrum of a ring for purely topological
reasons. This is discussed in Sect. 8.8.

Thus the situation with abstract real spectra is in marked contrast with
the corresponding situation for spaces of orderings. There is no known exam-
ple of a space of orderings which is not realized as the space of orderings of a
field. On the other hand, there are many examples of abstract real spectra,
even finite abstract real spectra, which are not realized as real spectra of
(commutative) rings. This suggests that more axioms may be required, but
it is not clear what these should be. At the same time, to complicate matters,
the newly discovered examples coming from noncommutative rings still have
to be investigated.

The Author wishes to thank Ludwig Brocker for explaining his idea of
abstract real spectra in various conversations over the course of several years.
His preprint [23] and the joint work [5] by Andradas, Brocker, and Ruiz
were very useful. Thanks are also due to Michel Coste, Max Dickmann, and
Claus Scheiderer for providing useful comments. Also, closer to home, thanks
are due to Leslie Walter, Mahdi Zekavat, and Yufei Zhang for their help in
reading the manuscript and locating misprints and points that needed further
clarification and improvement.

Finally, before we start, here are a few words about notation which may

be helpful.
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The unexplained notation is more or less standard. N, Z, Q, R, C denote
the positive integers, the integers, the rationals, the reals, and the complex
numbers respectively.

Z s denotes the integers modulo 2. If G is a group of exponent 2, dims(G)
denotes the dimension of G viewed as a vector space over Zs.

|A| denotes the cardinality of the set A. For sets A and B,

A\B:={z |z € A, z ¢ B}.

AB denotes the power set, i.e., the set of all functions from B to A. If f, g are
mappings, f o g denotes the composite mapping. f|y denotes the restriction
of f to a subset Y. If S is a set of mappings,

Sly ={flv | f € S}.

The closure of a set Y in a topological space is denoted by Y.

For k a field, k[ty, ..., t,] denotes the ring of polynomials and k(ty, ..., t,)
the field of rational functions. trdeg(F : k) denotes the transcendence degree
of a field extension F' of k.

All rings are assumed to be commutative with 1. For A aring, A[ty, ..., ts]
denotes the polynomial ring. (f1,..., fx) denotes the ideal in A generated
by fi,..-, fe- k(p) denotes the residue field of A at a prime p, i.e., the field
of quotients of the domain A/p. S~'A denotes the localization of A at a
multiplicative set S. A, denotes localization of A at a prime p, i.e., at the
multiplicative set A\p. If G is a group, A[G] denotes the group ring with
coefficients in A.




1. Orderings on Fields

In Sect. 1.1 we introduce some of the basic terminology and recall Lang’s
homomorphism theorem and its application to the solution of Hilbert’s 17th
problem. We also give a variation of Lang’s homomorphism theorem which
will be useful later in our study of dimension and stability index. Sect. 1.2
contains basic facts about groups of exponent 2 and their character groups.
In Sect. 1.3 we present the fundumental relationship between orderings and
real places. In Sect. 1.4 we give some examples.

1.1 Lang’s Homomorphism Theorem

An ordering on a field k is a subset P C k closed under addition and multipli-
cation, i.e., P+ P C P, PP C P, such that PU—P =k, and PN—P = {0}.
A field k is said to be formally real if it has an ordering. An ordered field is a
pair (k, P) where k is a field and P is an ordering on k. The theory of ordered
fields developed by Artin and Schrier is covered in basic algebra texts. Artin
used properties of ordered fields in his solution of Hilbert’s 17th problem.

Suppose P is an ordering of k. For any a € k, either a € P or —a € P.
Since P is closed under multiplication, this means a®> = (—a)? € P. Since
P is also closed under addition, this means P contains all finite sums Y a?,
a; € k. For example, 1 = 12 € P so P contains all positive integers (so, in
particular, k£ has characteristic 0).

k? denotes the set of squares of elements of k, i.e., k? := {a? | a € k}. Tk?
denotes the set of sums of squares of elements of k, i.e., the set of finite sums
S-a?, a; € k. Zk? is closed under addition and multiplication. A preordering
in k is any subset 7' C k such that T+ T C T, TT C T, k? C T. Example:
Every ordering is a preordering. Tk? is a preordering. Lk? is the unique
smallest preordering of k.

Theorem 1.1.1 If T is a preordering in a field k of characteristic # 2, and
a€k,agT, then there exists an ordering P of k with T C P,a ¢ P (so k
has characteristic 0).

This is a useful result. It implies, for example, (taking T' = Xk?, a = —1)
that k is formally real iff —1 ¢ Sk2.
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Proof. Using the fact that T is a preordering in k, one checks that 7" :=
T —al ={s—at|s,t €T} is also a preordering in k.

Claim 1: =1 ¢ T'. For, if — s—atstETthen at=1+s1fl14+s5=0
then —1 = s € T'so a = (41)? — (451)? = (41)2 + ( (S ET, a
contradiction. If 1 + s # 0 then ¢ # 0 so a= i (1H)2(t)(1+s) €T, also
a contradiction.

Now use Zorn’s lemma to pick P any preordering of ¥ maximal subject
to the conditions P D 7", —1 ¢ P.

Claim 2: P is an ordering. For,ifb € k,and b ¢ P, then P—bP is a preordering
and, as in Claim 1, =1 ¢ P — bP and P C P — bP so, by maximality of P,
P=P—-bP,ie., —be P. This proves PU—-P = k. Ifbe PN—P, b # 0,
then —1 = (})%(b)(—b) € P, a contradiction. This proves P N —P = {0}.

Finally, since a ¢ T and 0 = 0% € T', we know a # 0. Since —c; € P, and
PN —P = {0}, this means a ¢ P. Thus P has the required properties. O

It is assumed that the reader knows something about real closed fields
and real closures.

Lang’s work on ordered fields was motivated by the earlier work of Artin.
His famous homomorphism theorem was developed to explain and simplify
Artin’s solution of Hilbert’s 17th problem.

Theorem 1.1.2 (Lang’s homomorphism theorem) Suppose (k,Q) is an or-
dered field with real closure R and suppose D is a finitely generated k-algebra
which is an integral domain and that the ordering Q) extends to an ordering
in the quotient field of D in some way. Then

(1) There exists a k-algebra homomorphism ¢ : D — R.

(2) More generally, if ay, ..., am € D are positive in this extended ordering
then there exists a k-algebra homomorphism ¢ : D — R such that ¢(a;) > 0,
t1=1,....m

Lang’s homomorphism theorem, properly viewed, is just a weak version
of Tarski’s transfer principle. The proof given below illustrates this fact:

Proof. Let F be the quotient field of D, let P be the fixed extension of @
to F', and let R’ be the real closure of the ordered field (F, P). Since D is
a finitely generated k-algebra which is a domain, D = ﬂx‘p—x"l for some
prime ideal p C k[z1, ..., z,]. By the Hilbert Basis Theorem (e.g., see [8]), the
ideal p is finitely generated, say p = (g1, ...,9s), 9 € k[z1,....,zn], 1 =1,...s
Finding a k-algebra homomorphism ¢ : D — R just amounts to finding a
point (by,...,b,) € R™ such that g;(b1,...,b,) =0,7=1,..., 5. We know there
exists such a point in R, namely the point (z1+p, ..., z,+p), so the existence
of (by, ..., by) follows from Tarski’s transfer principle. This proves (1).



1.1 Lang’s Homomorphism Theorem 7

(2) can also be deduced from the transfer principle, but it can also be
deduced from (1) as follows: Since a; > 0, \/a; € R', i = 1,...,m. Let D' =
D[j—;, o 7;—'”] C R'. Applying (1), we obtain a k-algebra homomorphism

¢ : D' — R. Thus /a; = a;ﬁ € D' and ¢(\/a_,)¢(\/+‘_) = ¢(l) = 1 so
#(y/ai) # 0. Thus ¢(a;) = (¢(/a;))? >0,i=1,...,m. i

For the reader not familiar with the transfer principle, other proofs of
Lang’s homomorphism theorem are available (e.g., the proof in [49]), but
these proofs are also complicated. Rather than read these other proofs, the
beginner is probably better off to read the elementary proof of quantifier
elimination given in [12]. Some knowledge of model theory is helpful here,
but not absolutely necessary. Once quantifier elimination is established, the
transfer principle (and consequently, Lang’s homomorphism theorem) follow
as immediate corollaries. Quantifier elimination is a standard tool in real
algebraic geometry, so one needs it in any case if one wants to pursue this
area of study.

Corollary 1.1.3 (Solution of Hilbert’s 17th problem) Suppose (k,Q) is an
ordered field and R is some real closed extension of (k,Q) (so RNk = Q
where R? := {a® | a € R}). Suppose f € k[z1, ..., z,] satisfies f(ay,...,an) > 0
for all (ay,...,a,) € R™. Then f is expressible as f = 5 :_, rif? for some
fi, - fs €k(zy,...yzn), r1,...,75 € Q.

Proof. Let T denote the set of finite sums Zle rif2 f1y 0 fs € k(z1, ..., Tn),
r1,...,7s € @. This is a preordering in the rational function field k(z1, ..., z,).
If f & T then, by 1.1.1, we have an ordering P of k(zy,...,z,) with P D T
such that f € P. Clearly P D Q@ so PNk = @, i.e., P extends Q. Applying
Lang’s homomorphism theorem (2) to the polynomialring k[z1, ..., ,], we get
a k-algebra homomorphism ¢ : k[z1, ..., £p] — R such that ¢(f) < 0. Letting
a; = ¢(z;), 1 = 1,...,n, we see that ¢(f) = f(ay,...,an). Thus f(ai,...,an) <
0. a

From the point of view of these notes, Lang’s homomorphism theorem is
central and, at the same time, peripheral. It is required (only) to motivate
the definition of real spectra and to understand the application of the results
on minimal generation of constructible sets (in Chap. 7) to real algebraic
geometry.

Also, the following version of Lang’s homomorphism theorem will be use-
ful, later on, to understand the meaning of the stability index (Sect. 3.6) and
dimension (Sect. 7.3) in the concrete setting of real algebraic geometry.

Theorem 1.1.4 Suppose (k,Q) is an ordered field, F is a finitely generated
field extension of transcendence degree d > 1 over k which has an ordering
extending Q, and D C F is any finitely generated k-algebra of transcendence
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degree d over k. Then there exists a discrete valuation ring B in F with
D C B such that the residue field F of B is a finitely generated field extension
of transcendence degree d — 1 over k which has an ordering extending @), and
the image of D under the mapping B — F is a finitely generated k-algebra
of transcendence degree d — 1 over k.

Proof. By Noether normalization [8, p. 169], there exists a transcendence
basis zj,...,z4 in D such that D is integral over k[zi,...,z4]. Let k; =
k(zy,...,x4-1), so trdeg(F : k1) = 1, and let £ = the integral closure of
ki[z] in F, where 2 = z4. E is a Dedekind domain [8, Chap. 9] and is finitely
generated as a k;-algebra (since it is even finitely generated as a k;[z]-module;
see [8, Prop. 5.17, p. 64]). Let P be a fixed ordering on F extending @ and
let R; be a real closure of k; at the induced ordering P; = PNk;. According
to Lang’s homomorphism theorem, there exists a k;-algebra homomorphism
a: FE — R;. Let p = ker(a). Then p is a maximal ideal of E so the local ring
E, is a discrete valuation ring in F' (8, Th. 9.3, p. 95]. Take B = E),. Since
k[z1,...,z4] C E and E is integrally closed in F', it follows that D C E C Ej.
The residue field of E, is F = E,/p, = E/p = a(E) C R;. This is a finite
extension of ky[z]/(f) where (f) = pNk;[z] which, in turn, is a finite exten-
sion of k; = k(z1,...,£4-1). Thus z1,...,z4-1 is a transcendence basis of F
over k. Since z1,...,z4_1 are in the image of D, the proof is complete. O

1.1 Characters on groups of exponent 2

We need some elementary facts about groups of exponent 2 and their char-
acter groups.

A group of ezponent 2 is a (necessarily abelian) group G satisfying a? = 1
Y a € G. A character on a group G of exponent 2 is a group homomorphism
z: G — {—=1,1}. The character group of a group G of exponent 2 is x(G) :=
Hom(G, {—1,1}), the set of all characters on G, with the group operation
defined pointwise, i.e., (zy)(a) := z(a)y(a) for all a € G.

Any group G of exponent 2 is a direct sum of & cyclic groups of order 2,
where & is some cardinal number, and the character group x(G) is the direct
product of k cyclic groups of order 2 (same k). In particular, if & is finite,
then x(G) = G (non-canonically). Perhaps the easiest way to understand this
is to write the operation on G as 4 so the condition that G has exponent 2
is that 2a = 0 Va € G, i.e., a group of exponent 2 is just a vector space over
the 2-element field Z, = ;LZ' Viewed in this way, the cardinal number & is
just the dimension of G (we denote this dimension by dim»(G)), and x(G) is
just the dual space of G. Note: If « is infinite, then the dimension of x(G) is
strictly greater than .

If G is a group of exponent 2, then x(G) has a natural topology making
it into a topological group. The topology is just the weakest such that the
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mappings z — z(a), a € G, are continuous, giving {—1, 1} the discrete topol-
ogy. Saying that x(G) is a topological group just means that the topology is
Hausdorff and the mappings (z,y) — zy, ¢ — z~! on x(G) are continuous.
Of course, since the exponent is 2, ! = z so the second mapping is just the
identity.

Proposition 1.2.1 For any group G of exponent 2:
(1) x(G) is compact.
(2) For each subgroup H of G, x(G/H) is a closed subgroup of x(G).
(8) Conversely, if S is any closed subgroup of x(G) then S = x(G/H)
where H = Nges ker(z).

Note: We are identifying characters of G/ H with characters of G contain-
ing H in their kernel.

Proof. (1) Denote by {—1,1}¢ the set of all functions from G to {—1,1} with
the product topology, giving {—1,1} the discrete topology. Then x(G) C
{=1,1}C and the topology on x(G) is the induced topology. Since {—1,1}¢
is compact by Tychonoff’s theorem, it suffices to check that x(G) is closed in
{=1,1}¢. Suppose z € {-1, 1}9 is in the closure of x(G). For each a,b € G,
the set

U={ye{-1,1}9|y(a) = z(a), y(b) = z(b), y(ab) = z(ab)}

is a neighbourhood of z in {—1,1}%. Thus U N x(G) # 0, say y € U N x(G).
Then y(ab) = y(a)y(b) so z(ab) = y(ab) = y(a)y(b) = z(a)x(b). This proves
z is a character of G, so z € x(G).

(2) x(G/H) is compact by (1) so it is closed in x(G).

(3) It is clear that S C x(G/H). Replacing G by G/H, we are reduced
to the case where H = {1}. Thus we are assuming S C x(G) is a closed
subgroup such that Nzes ker(z) = {1}, and we want to show S = x(G).

It suffices to handle the case where G is finite. Suppose K is any finite
subgroup of G and denote by S|k the set of restrictions z|k, £ € S. This is
a subgroup of x(K) and Nges ker(z|x) = {1}. Thus, if we know the result
in the finite case, then S| = x(K). This means that, for each y € x(G) and
each finite subgroup K of G, there exists z € S such that z|x = y|x. Since
S is closed in x(G), this implies S = x(G).

So suppose G is finite (so the topology is discrete). Let {z1,...,z,} be a
subset of S chosen minimal such that N, ker(z;) = {1}. Consider the chain
of subgroups

G D ker(z1) D ker(zi) Nker(zz) 2 ... 2 NP ker(z;) = {1}.

For j = 1,...,n, ker(z;) has index 2 in G and ﬂf;ll ker(z;) ¢ ker(z;) by the
minimal choice of the subset {z,...,2,}. Thus (ﬂ{;ll ker(z;))-ker(z;) = G
S0
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1ker z;) 1ker (z:)) ker(z;) G
ﬂf 1ker(:z:,) ker(z;) ~ ker(z;)’

This means ﬂf=1 ker(z;) has index 2 in ﬁf;ll ker(z;), 7 =1,...,n,s0 {1} =
N, ker(z;) has index 2" in G, i.e., |G| = 2". Thus, by counting, we see that
the natural injection G — []/_, G/ker(z;) is surjective so we get elements

ai,...,an in G such that z;(a;) = —1 if 7 = j and 1 otherwise. Clearly
ai,...,a, are a Zz-basis of G, 1.e., every element a € G is expressible uniquely
as a = [[IL, ai*, ei € {0,1}. Also it is clear that z,,..., 2, is just the dual
basis of x(G). Since z1, ..., z, are in S, this means S = x(G). O

A topological space X is called a Boolean space if it is compact and
Hausdorff and the clopen (i.e., both closed and open) sets form a basis for
the topology. For example, if G is a group of exponent 2 then x(G) is a
Boolean space. Boolean spaces are also characterized as compact Hausdorff
spaces which are totally disconnected (i.e., the connected components are
singleton sets). This is a consequence of the following general result which
we record now for future use:

Lemma 1.2.2 For any compact topological space X which is normal (i.e.,
disjoint closed sets can be separated), the connected component of any z € X
is the intersection of all clopen sets in X containing x.

Note: We are not assuming X is Hausdorft. If X is Hausdorff then compact
implies normal.

Proof. Let z € X and let Z C X be the intersection of all clopen sets con-
taining z. Clearly the connected component of z is contained in Z. If we
show that Z is connected, it will follow that Z is the connected component
of z and we will be done. Suppose this is false so we have non-empty closed
sets Z1,Z,in Z with ZyUZy = Z, Zy NZy = 0. Z is closed in X since
it is the intersection of clopen sets, so Z;,Z, are closed in X. Since X is
normal, there exist disjoint open sets Uy, U, in X with U; D Z;, i = 1,2.
Consider the closed sets X\U;, X\Usz. Then (X\U;) N (X\U2)NZ =0 so
by compactness, (X\U;) N (X\U2) NY = 0 for some clopen set ¥ in X
with Z C Y. Y decomposes as a disjoint union of two non-empty open sets
Y =(U1NY)U(UzNY). This means U1 NY and U; NY are clopen in Y
(and hence in X). Say € U; NY. Then U; NY is a clopen set containing z
and Z ¢ U; NY which contradicts the definition of Z. O
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1.3 Orderings and Real Places

Elementary results in the model theory of real closed fields, e.g., the transfer
principle, tend to emphasize points of similarity between ordered fields, but
two ordered fields can be quite different in important aspects. To understand
these differences one has to go to the arithmetic of the field, specifically, to
the associated real places.

In these notes the focus is not on a single ordering so much but rather
on the set of all orderings on a field k. In the final analysis, orderings on &
come from the unique ordering on the field of real numbers via the real places
a: k — RU{oco}. This was noticed first by Krull and Baer, and we explain
this now in detail; also see [48].

First we recall some terminology A valuation ring in a field lc 1s a subring
B C k such that for all @ € k* := k\{0}, either a € B or -- € B. Any
valuation ring B is a local ring thh m ={a€k"| L ¢ BYU{0} as its unique
maximal ideal and U = {a € k* | a,> € B} = B\m as its unit group. The
field k = B/m is called the residue ﬁeld of B. A place from k to some other
field k' is a ring homomorphism « : B — k' where B is a valuation ring in &
with kernel = m = the maximal ideal of B (so o : B — k' factors uniquely
as & = @o p where p: B — k = B/m is the homomorphism to the residue
field and @ : k — k' is some embedding). Normally, we extend the place &
to a function « : k — k' U {oo} (where oo is a symbol not in k') by defining
a(a) = oo if a € k\B. A valuation ring B in k is said to be trivialif B = k
(so m = {0}). A place is said to be trivial if the associated valuation ring is
trivial, i.e., a trivial place a : k — k' U {oo} is just an embedding « : k — k'.
We say a place a : k — k' U {oo} is real if k' = R, the usual field of real
numbers. (This terminology is not standard. Most people require only that
k' is formally real.)

Notes. (1) Suppose B, B’ are valuation rings in k with maximal ideals m, m’
respectlvely Then B’ C B < m C m’ and, in this case, m is a prlme ideal of

B’ and £~ is a valuation ring in k = £ with maximal ideal '“ and residue
m

field 1:‘ / ﬁ = %. Moreover, B’ — T«' defines a one-to-one correspondence
between valuation rings in k contained in B and valuation rings in k.

(2) Of course, if B is a discrete valuation ring then {0}, m’ are the only
prime ideals of B’ so, if B’ C B, then either m = {0} (so B = k) or m = m’
(so B = B').

B)Ifa:k—kU{xo}i 15 2 place and a~!(k’) C B, then a factors as
a=aopwherep: B— k= ; is the natural homomorphism and @ is some
(necessarily unique) place from k to k’. This is clear from (1).

Suppose now that P is an ordering on k. We say P is archimedian if
for each a € k there exists an integer n > 1 (depending on a) such that
n—a,n+a € P.If Pis archimedian, there is a unique embedding a : k — R
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such that P = a~1(R?). Here R? := {a® | a € R}, the unique ordering on RR.
Fora€k,a(a)=inf{reQ|r—a€ P} =sup{r € Q|a—r € P} where Q =
the field of rational numbers. In this case, the real place associated to P is just
the trivial place a : k — R. On the other hand, if P is non-archimedian, set
Bp = {a € k| n—a,n+a € P for some integer n > 1} It is eagy to check that
Bp is a valuation rlng in k and that mp := {a € k | L_g1 =~ +a¢€ P for all
positive integers n} is the maximal ideal of Bp. Also P mduces an ordering
P on the residue field k := Bp/mp given by P = {a + mp |a € Bp N P}
and P is archimedian, so we get a unique embedding @ : k¥ < IR such that
@ !(R?) = P. Composing @ with the natural homomorphism from Bp to k
gives a real place o : k — R U {oo} given by

_ oo if a ¢ Bp
ofa) = {a(a+mp) if a € Bp.

Note: If P is archimedian then Bp = k, mp = {0}, k = k, and @ = a.

Notation. We denote the real place a : & — R U {oo} constructed in this
way from the ordering P by A(P).

Conversely, suppose a : k — R U {oo} is any real place. Let B = {a €
k | a(a) # oo}. Thus B is a valuation ring of k£ with maximal ideal m =
{a € k| a(a = 0}. Let U denote the unit group of B, i.e.,, U = B\m and
let Ut = {a € U | a(a) > 0}. Ut is a subgroup of U and 21 ¢ k*2Ut. (If
—1=a?,a€k*, be U™, then a € U so, applying a, —1 = a(a)?a(b) > 0, a
contradiction.) There are, in general, many orderings P such that A(P) = a,
but they are all obtained by a simple process. Pick any subgroup P* C k*
containing k*2U 7 such that —1 ¢ P*.

Claim 1. P := P*U{0} is a preordering in k. (In particular, k*U+t = k*2UtU
{0} is a preordering in k.) Clearly PP C P. Showing P+ P C P is less trivial.
Suppose a,b € P. We want to show a+b € P. Thisis clearif a =0or b =0,
so we can assume a,b € P*. Either § € B or % e B. Interchanging a,b
if necessary, we can assume -~ E B. We claim 1+ € Ut. For otherwise,
applying a, we get a2 ) —1 so —2 ceUtcPpP whlch is a contradiction
because P* is a group, 2 € P*, —1 ¢ P*. Thusa+b=a(l+2%) e PU*T C
P*P* C P*. This proves P+ P C P, so P is a preordering.

Claim 2. Suppose, in addition, that P* is maximal subject to the condition
—1 ¢ P*. Then P = P*U {0} is an ordering in k and A\(P) = a. If @ € k7,
a ¢ P, then, since k*2 C P*, P* UaP* is a subgroup of k* and clearly
P* G P*UaP* so =1 € P*UaP*. Since —1 ¢ P*, this means —1 € aP”,
lLe., a = —1 mod P*. This proves P* U —P* = k*, so PU—P = k. Also,
pP* ﬂ —P* =0 so PN—P = {0}. This proves P is an ordering.

Ifa¢ B, then L em Thus a(l £ 1)=21>0s0 L+ 5 €U* CP. This
proves 1 € mp so a ¢ Bp. This proves Bp C B. Suppose a € B. Then a(a) #



