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Foreword

The workshop ” Algebraic Geometry and Coding Theory - 3” organized by the Insti-
tute of Information Transmission (Moscow), University of Essen, Equipe Arithmétique
et Théorie de I'Information de C.N.R.S. (Marseille-Luminy), and Group d’Etude du
Codage de Toulon took place in the Centre International de Rencontres Mathématiques,
June 17-21, 1991.

The workshop was a continuation of AGCT-1 and AGCT-2 that took place in 1987
and 1989, respectively. It is to be followed by AGCT-4 in 1993, etc., each time held in
C.ILR.M.

The list of participants follows.

It is our pleasure to thank the staff of C.I.LR.M. for their hospitality, the participants
for their interest, all supporting organizations for their financial support, and Springer-
Verlag for the Proceedings.

Organizers,
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Algebraic Geometry and Coding Theory
An Introduction

Henning Stichtenoth, Michael A. Tsfasman
H.St.: Fachbereich 6 - Mathematik, Univ.GHS Essen,
D-4300 Essen 1, Germany
M.Ts.: Institute of Information Transmission,

19 Ermolovoi st., Moscow GSP-4, U.S.S.R.

About ten years ago V.D.Goppa discovered an amazing connection between the
theory of algebraic curves over a finite field F; and the theory of error-correcting block
g-ary codes. The idea is quite simple and generalizes the well known construction of
Reed-Solomon codes. The latter use polynomials in one variable over F; and Goppa
generalized this idea using rational functions on an algebraic curve.

Here is the definition of an algebraic geometric code (or a geometric Goppa code).
Let X be an absolutely irreducible smooth projective algebraic curve of genus g over
F,. Consider an (ordered) set P = {Pi,...,P,} of distinct Fy-rational points on X
and an F4-divisor D on X. For simplicity let us assume that the support of D is disjoint
from P. The linear space L(D) of rational functions on X associated to D yields the
linear evaluation map

Evp : L(D) — F§
fH(f(Pl)’vf(Pn))

The image of this map is the linear code C = (X, P, D) we study.

The parameters of such a code can be easily estimated. Indeed, let P = Pi+...+P,,
then the dimension k is given by

k=¢D)— €D —-P)
and in particular if 0 < deg D < n then
k=¢D)>degD—g+1.
The minimum distance
d>n—degD

since the number of zeroes of a function cannot be greater than the number of its poles.
We get the lower bound

k+d>n+1-g

which is by g worse than the simplest upper bound valid for any code



k+d<n+1.

An equivalent description of these codes can be given in terms of algebraic function
fields in one variable over Fy. The curve X corresponds to the function field F' = F¢(X),
and F,-points on X correspond to places of F' of degree one.

Originally, Goppa used the dual construction using differentials on X rather than
functions, and the residue map.

Unfortunately, there are at least two different traditions of notation. The second
one uses D for our P and G for our D , and the code is denoted Cr (D, G).

The construction can be generalized in several directions. In particular one can use
sheaves (or some other tricks) to avoid the condition PNSuppD = @. The generalization
to the case of higher dimensional algebraic varieties looks very promising but so far the
results are few.

There are several main streams of the development of the theory. Let us briefly
discuss some of them.

Asymptotic problems. One of the fundamental problems of coding theory is
to construct long codes with good parameters (rate and relative minimum distance).
One of the starting points of the theory was the construction of long codes which
are asymptotically better than the Gilbert-Varshamov bound. The other asymptotic
question is which codes can be constructed in polynomial time.

Specific curves. There are many interesting examples of curves with many F-
points which lead to codes with good parameters. Sometimes such curves and codes
have nice additional properties, such as large automorphism groups.

Spectra and duality. The study of weight distribution and of duality leads to
interesting questions of algebraic geometry, such as the study of Weierstrass points and
special divisors on a curve.

Decoding. Surprisingly enough the decoding problem can be set in purely alge-
braic geometric terms and again one needs information about special divisors.

Exponential sums. Another component of the picture is the theory of exponential
sums closely related both to algebraic geometry and to coding theory.

Related areas. The theory of algebraic geometric codes has either analogues
or applications in several other topics. Such are sphere packings and spherical codes,
multiplication complexity in finite fields, graph theory, and so on. These applications
also require subtle information about the geometry and arithmetic both of function

fields and of number fields.

To conclude, the first ten years of development show that the connection between
algebraic geometry and coding theory proves fruitful for both, giving new results and
posing many exciting questions.



Several books and many papers on the subject are either published or in prepa-
ration. The papers are too numerous to list them here and we refer to the extensive
bibliography in [Ts/V]] and to references given in the papers of this volume. Here is
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Reed-Muller Codes Associated to

Projective Algebraic Varieties

Yves AUBRY
Equipe CNRS "Arithmétique et Théorie de 1'Information”

C.ILRM. Luminy Case 916 - 13288 Marseille Cedex 9 - France.

Abstract

The classical generalized Reed-Muller codes introduced by Kasami, Lin and Peterson [5], and studied also
by Delsarte, Goethals and Mac Williams [2], are defined over the affine space A“(Fq) over the finite field Fy
with q elements. Moreover Lachaud [6], following Manin and Vladut [7], has considered projective Reed-Muller
codes, i.e. defined over the projective space P"(Fq).

In this paper, the evaluation of the forms with coefficients in the finite field Fq is made on the points of a
projective algebraic variety V over the projective space Pn(Fq). Firstly, we consider the case where V is a

quadric hypersurface, singular or not, Parabolic, Hyperbolic or Elliptic. Some results about the number of points
in a (possibly degenerate) quadric and in the hyperplane sections are given, and also is given an upper bound of
the number of points in the intersection of two quadrics.

In application of these results, we obtain Reed-Muller codes of order 1 associated to quadrics with three
weights and we give their parameters, as well as Reed-Muller codes of order 2 with their parameters.

Secondly, we take V as a hypersurface, which is the union of hyperplanes containing a linear variety of
codimension 2 (these hypersurfaces reach the Serre bound). If V is of degree h, we give parameters of Reed-
Muller codes of order d < h, associated to V.

1. Construction of the Projective Reed-Muller codes

We denote by P"(Fq) the projective space of dimension n over the finite field Fg with g

elements, q a power of a prime p. The number of (rational) points (over F) of P“(Fq) is
n+l
1cn=|P"(Fq)l=q"+q"_l +..+q+1 =—qq—_—_1—l.



Let Wj be the set of points with homogeneous coordinates (xq : Xj : ... : X,) € P"(Fq) such that
Xg=X] =..=X;_1 =0and x; # 0.
The family ( W )., is clearly a partition of P"(F).

Let Fq[Xg, X1, - Xn]g be the vector space of homogeneous polynomials of degree d with

(n+1) variables and with coefficients in Fg. Let V be a projective algebraic variety of P"(Fq)

and let | V | denotes the number of theirs rational points over Fgq. Following G. Lachaud ([6]),
we define the projective Reed-Muller code R (d,V) of order d associated to the variety V as the
image of the linear map

¢ : Fg[Xg, X1, r Xplg = FV!
defined by ¢(P) = ( cx(P) )xe V, Where

P
cx(P) =L%X") ifx=(xg:..ix)) € W .
Xi
G. Lachaud has considered in [6] the case where V = P"(Fq), with d < q.Moreover,
A.B. Sorensen has considered in [12] the case where V is equal to P"(Fq) too, but with a
weaker hypothesis on d.

Now we are going, firstly, to study the case where V is a quadric, degenerate or not, but
before we have to establish results on quadrics and this is the subject of the following

paragraph.

2. Results on quadrics

In what follows the characteristic of the field Fq is supposed to be arbitrary (the results hold in
characteristic 2 as well as in characteristic different of 2).

2.1. The quadrics in P"(Fgq).

In this paragraph, we recall some properties of quadrics in the projective space P"(Fq).
J.F. Primrose has given in [8] the number of points in a nondegenerate quadric (see below the
definition of the rank of a quadric), and D.K. Ray-Chaudhuri [9] gave more general results
(which with, in a particular case, we recover those of Primrose's). We are going here to follow
the notations of J.W.P. Hirschfeld in [4].

A quadric Q of P"(F, o) is the set of zeros in P“(Fq) of a quadratic form
0
Fe Fq[XO, X], teey Xn]zv



that is of an homogeneous polynomial of degree 2. We set Q = ZPn(F) or simply Z(F) if no

confusion is possible. The quadric Q is said to be degenerate if there exists a linear change of
coordinates with which we can write the form F with a fewer number of variables. More
precisely, if T is an invertible linear transformation defined over P"(Fq), denote by Fr(X) the
form F(TX). Let i(F) be the number of indeterminates appearing explicitly in F. The rank r(F)
of F (and by abuse of language, of the quadric Q), is defined by :

r(F) = min i(F)
where T ranges over all the invertible transformations defined over Fg. A form F (and by abuse
the quadric Q) is said to be degenerate if

r(F) <n+ 1.

Otherwise, the form and the quadric are nondegenerate.
Let us remark that a quadric is degenerate if and only if it is singular (see [4]).

We recall after J.W.P. Hirschfeld (see [4]) that in P"(Fq), the number of different types
of nondegenerate quadrics Q is 1 or 2 as n is even or odd, and they are respectively called
Parabolic (P), and Hyperbolic (#) or Elliptic (E).

The maximum dimension g(Q) of linear subspaces lying on the nondegenerate quadric Q is
called the projective index of Q. The projective index has the following values (see [4]) :

go =272, gop="51, g =50

The character w(Q) of a nondegenerate quadric Q of P"(Fq) is defined by :
o(Q) =2g(Q) —n+3.

Consequently, we have :
o@®=1, o#H=2, oF)=0
Then, we have the following proposition (for a proof see [4]) :

Proposition 1 : The number of points of a nondegenerate quadric Q of P“(Fq) is:
1Ql=my_1+(@Q—1)qn-1r2,

We want now to evaluate the number of points of a degenerate quadric Q = Z(F) of P“(Fq) of
rank r (called a "cone" of rank r).
We have the following decomposition in disjoint union (an analogous decomposition is given
by R.A. Games in [3]) :

szn—rUQ*r— 1-
We have set

Vnor={(0:0:...:0:y;:...:y5) € PYFQ) =P"'(Fy),

if we suppose that the r variables appearing in the quadratic form F are X, X1, ..., X, _ 1. The
set V, _is called the vertex of Q, and is the set of singular points of Q. We note also
Q' 1={(Xg: .- i Xp_1:Yri-. : yp) € PU(FQ) | F(Xg,..., y) = 0 and the x; are not all zero}.
Let Q, _  be the nondegenerate quadric of P~ (Fq) associated to Q, i.e. defined by

Q_1= Zpr—l(Fr— D



or more precisely,

Q_1={ (ot .. 1€ PTIFYIF_1(xq, ... . x,_1)=0},
where F. _1(Xp, ..., X;_1) = F(Xp, ... ,.Xy). The (degenerate) quadric Q will abusively be
said to be parabolic, hyperbolic or elliptic according to the type of its associated nondegenerate
quadric Q; _ ;. Its character w(Q) is by definition the character ®(Q, _ ) of Q, _.
Then, we have the following result which can be found in R.A. Games [3] :

Theorem 1 : The number of points of a quadric Q of P"(F ) of rank r is :

1Ql=m, 1+ (@(Q-1)q" =2
and we have ®(Q) = 1 ifris odd, and ®(Q) =0 or w(Q) =2 if ris even.

In particular, a quadric of odd rank is necessarily parabolic, and a quadric of even rank is
hyperbolic or elliptic.

Corollary : Let Q be a quadric of P"(Fq), with n > 2. We have :

-1
Tp_2<I1QI<m,_1+q" ',

and the bounds are reached.

Observe that the lower bound is the Warning bound and that the upper bound reaches the
following Serre bound, conjectured by Tsfasman, which says that (see [11]) if F €

Fq[XO,...,Xn]g is a nonzero form of degree d < q, with n > 2, then the number N of zeros of F

in Fq" is such that :
N <dq" '-@d-1q" 2

2.2. Hyperplane sections of quadrics.

This paragraph deals with the number of points in the intersection of a quadric and a
hyperplane. When the quadric is nondegenerate, the result is known (see for example [13]).
R.A. Games has given the result when the quadric has the size of a hyperplane, provided the
quadric itself is not a hyperplane (see [3]). Furthermore, I.M. Chakravarti in [1] has solved the

case when the quadric is 1-degenerate, that is a quadric of rank n in P"(Fq).
We are going, here, to consider the general case, i.e. quadrics in P"(Fq) of any rank.

We begin by the known nondegenerate case. If Q is a nondegenerate quadric of P"(Fq)
(i.e.of rank r =n + 1) and if H is a hyperplane of P“(Fq), with n > 1, then Q N H can be seen
as a quadric in a space of dimension n — 1. We know (see for example [8]) that the rank of
QN Hisr — 1orr—2. Then, either Q N H is nondegenerate (in P" ~ I(Fq)), or QN His of
rank r— 2 = n— 1 (whence degenerate in P" ~ 1(Fq)) ; one says in this last case that H is rangent

to Q.



Now we have to know what is the value of ®W(Q M H), i.e. what happens to the type of
the quadric. If the hyperplane H is not tangent to Q, it is obvious that Q N H becomes parabolic
if Q is hyperbolic or elliptic (indeed r(Q) is necessarily even, and if H is not tangent we have
r(Q N H) =1r(Q) — 1 hence odd, then Q N H is parabolic) ; and Q N H becomes hyperbolic or
elliptic if Q is parabolic (same reason rest on the parity of the ranks).

Now if the hyperplane H is tangent to Q, we have the following proposition (see [13]) :

Proposition 2 : The quadric Q N H is of the same type as the nondegenerate quadric Q if the
hyperplane H is tangent to Q.

Then, we can give the result about the hyperplane sections of a quadric of any rank :

Theorem 2 : Let Q be a quadric of P“(Fq) of rank r whose decomposition is
Q=Vy ;uQ' 4
and let H be a hyperplane of P“(Fq). Then :
a)If Ho V, _, then
IQNHI=m,_,+(@Q,_;NnH)-1)q?-1-D2
if H, is not tangent to Q _ T and
QA HI=7, 5+ (@Q -1 g~ ?
if H, is tangent to Q; _ 1, where H,, is the hyperplane of P~ 1(Fq) defined by
He=Z, (b

where h is the linear form in F[X,,... X, _ 1]? defining H ; moreover o(Q; _ ; m H,) is equal
to 1 if Q is hyperbolic or elliptic, and equal to O or 2 if Q is parabolic.
b) If H V,_, then

IQNHI=m,_,+(@Q)—1)q?"~T-272

Proof : We suppose that the r variables appearing in the quadratic form F defining Q are
X0 X e e Xp 1 -
If we set H; the hyperplane whose equation is Xj = 0, we have
Von_r=HogmnHin..nH;_;.
But
QNH=(Vy_;UQ _DNH=(Vh_nH UQ,;_,"H),
Thus
IQAHI=IV,_,AnHI+IQ,_{AnHI - IV,_,nQ_{NHI;
butV, ;N Q" _1=9,thus:
IQAHI=IV, _,AHI+IQ;_;nHL



