Gilles Barthe

- Lilian Burdy
Marieke Huisman
Jean-Louis Lanet
Traian Muntean (Eds.)

Hot Topics

LNCS 3362

_Smart Dewces

International Workshop, CASSIS 2004
Marseille, France, March 2004
Revised Selected Papers

A Springer

Gilles Barthe Lilian Burdy
Marieke Huisman Jean-Louis Lanet
Traian Muntean (Eds.)

Construction and Analysis
of Safe, Secure, and Interoperable
Smart Devices

International Workshop, CASSIS 2004
Marseille, France, March 10-14, 2004
Revised Selected Papers

@ Springer

Volume Editors

Gilles Barthe

Lilian Burdy

Marieke Huisman

Jean-Louis Lanet

INRIA Sophia-Antipolis

2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis, France
E-mail: {Gilles.Barthe, Marieke. Huisman, Jean-Louis.Lanet} @inria.fr
Lilian.Burdy @sophia.inria.fr

Traian Muntean

Université de la Méditerranée

Ecole Supérieure D’Ingénieurs de Luminy

Case 925 - ESIL Parc Scientifique, 13288 Marseille, France
E-mail: Traian.Muntean @esil.univ-mrs.fr

Library of Congress Control Number: 2004117384

CR Subject Classification (1998): D.2, C.3,D.1,D.3,D.4,E3,E3

ISSN 0302-9743
ISBN 3-540-24287-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11375197 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3362

Lecture Notes in Computer Science

For information about Vols. 1-3260

please contact your bookseller or Springer

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2004.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2004.

Vol. 3381: M. Bielikovéd, B. Charon-Bost, O. Sykora, P. Vo-
jtas (Eds.), SOFSEM 2005: Theory and Practice of Com-
puter Science. XV, 428 pages. 2004.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3362: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
T. Muntean (Eds.), Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. IX, 257 pages.
2004.

Vol. 3360: S. Spaccapietra, E. Bertino, S. Jajodia, R. King,
D. McLeod, M.E. Orlowska, L. Strous (Eds.), Journal on
Data Semantics II. XI, 233 pages. 2004.

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-
allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3353: J. Hromkovi¢, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3350: M. Hermenegildo, D. Cabeza (Eds.), Practical
Aspects of Declarative Languages. VIII, 269 pages. 2004.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. XIV, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3344: J. Malenfant, B.M. @stvold (Eds.), Object-
Oriented Technology. ECOOP 2004 Workshop Reader.
VIII, 215 pages. 2004.

Vol. 3342: E. Sahin, W.M. Spears (Eds.), Swarm Robotics.
X, 175 pages. 2004.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. X1, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXII, 1272 pages. 2004. (Subseries
LNAI).

Vol. 3338: S.Z. Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. XVIII, 699
pages. 2004.

Vol. 3337: J.M. Barreiro, F. Martin-Sanchez, V. Maojo, F,
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. Fu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Collaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part ITII. XXXV, 78S pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part IT. XXXVI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXXVI, 667 pages. 2004.

Vol. 3329: P.J. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. XVI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. XVI, 532 pages. 2004.

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zuni¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. XII, 510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3316: N.R. Pal, N.K. Kasabov, R.K. Mudi, S. Pal,
S.K. Parui (Eds.), Neural Information Processing. XXX,
1368 pages. 2004.

Vol. 3315: C. Lemaitre, C.A. Reyes, J.A. Gonzélez (Eds.),
Advances in Artificial Intelligence — IBERAMIA 2004.
XX, 987 pages. 2004. (Subseries LNAI).

Vol. 3314: J. Zhang, J.-H. He, Y. Fu (Eds.), Computational
and Information Science. XXIV, 1259 pages. 2004.

Vol. 3312: A.J. Hu, A.K. Martin (Eds.), Formal Methods
in Computer-Aided Design. X1, 445 pages. 2004,

Vol. 3311: V. Roca, F. Rousseau (Eds.), Interactive Mul-
timedia and Next Generation Networks. XIII, 287 pages.
2004.

Vol. 3309: C.-H. Chi, K.-Y. Lam (Eds.), Content Comput-
ing. XII, 510 pages. 2004.

Vol. 3308: J. Davies, W. Schulte, M. Barnett (Eds.), For-
mal Methods and Software Engineering. XIII, 500 pages.
2004.

Vol. 3307: C. Bussler, S.-k. Hong, W. Jun, R. Kaschek,
D.. Kinshuk, S. Krishnaswamy, S.W. Loke, D. Oberle, D.
Richards, A. Sharma, Y. Sure, B. Thalheim (Eds.), Web
Information Systems — WISE 2004 Workshops. XV, 277
pages. 2004.

Vol. 3306: X. Zhou, S. Su, M.P. Papazoglou, M.E. Or-
lowska, K.G. Jeffery (Eds.), Web Information Systems —
WISE 2004. XVII, 745 pages. 2004.

Vol. 3305: PM.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3303: J.A. Lépez, E. Benfenati, W. Dubitzky (Eds.),
Knowledge Exploration in Life Science Informatics. X,
249 pages. 2004. (Subseries LNAI).

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3300: L. Bertossi, A. Hunter, T. Schaub (Eds.), In-
consistency Tolerance. VII, 295 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3298: S.A. Mcllraith, D. Plexousakis, F. van Harme-
len (Eds.), The Semantic Web — ISWC 2004. XXI, 841
pages. 2004.

Vol. 3296: L. Bougé, V.K. Prasanna (Eds.), High Perfor-
mance Computing - HiPC 2004. XXV, 530 pages. 2004.

Vol. 3295: P. Markopoulos, B. Eggen, E. Aarts, J.L. Crow-
ley (Eds.), Ambient Intelligence. XIII, 388 pages. 2004.

Vol. 3294: C.N. Dean, R.T. Boute (Eds.), Teaching Formal
Methods. X, 249 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), Onthe
Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part II. XXV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part I. XXV, 823 pages. 2004.

Vol. 3289: S. Wang, K. Tanaka, S. Zhou, T.W. Ling, J.
Guan, D. Yang, F. Grandi, E. Mangina, I.-Y. Song, H.C.
Mayr (Eds.), Conceptual Modeling for Advanced Appli-
cation Domains. XXII, 692 pages. 2004.

Vol. 3288: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.W. Ling
(Eds.), Conceptual Modeling - ER 2004. XXI, 869 pages.
2004.

Vol. 3287: A. Sanfeliu, J.F. Martinez Trinidad, J.A. Car-
rasco Ochoa (Eds.), Progress in Pattern Recognition, Im-
age Analysis and Applications. XVTI, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. XIII, 491 pages.
2004.

Vol. 3285: S. Manandhar, J. Austin, U.B. Desai, Y. Oy-
anagi, A. Talukder (Eds.), Applied Computing. XII, 334
pages. 2004.

Vol. 3284: A. Karmouch, L. Korba, E.R.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
XII, 382 pages. 2004.

Vol. 3283: FA. Aagesen, C. Anutariya, V. Wuwongse
(Eds.), Intelligence in Communication Systems. XIII, 327
pages. 2004.

Vol. 3282: V. Guruswami, List Decoding of Error-
Correcting Codes. XIX, 350 pages. 2004.

Vol. 3281: T. Dingsgyr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, 1. Kérpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. X VIII, 1009
pages. 2004.

Vol. 3279: G.M. Voelker, S. Shenker (Eds.), Peer-to-Peer
Systems III. X1, 300 pages. 2004.

Vol. 3278: A. Sahai, F. Wu (Eds.), Utility Computing. XI,
272 pages. 2004.

Vol. 3275: P. Perner (Ed.), Advances in Data Mining. VIII,
173 pages. 2004. (Subseries LNAI).

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3272: L. Baresi, S. Dustdar, H. Gall, M. Matera (Eds.),
Ubiquitous Mobile Information and Collaboration Sys-
tems. VIII, 197 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. X1, 564 pages. 2004.

Vol. 3268: W. Lindner, M. Mesiti, C. Tiirker, Y. Tzitzikas,
A. Vakali (Eds.), Current Trends in Database Technology
- EDBT 2004 Workshops. XVIII, 608 pages. 2004.

Vol. 3267: C. Priami, P. Quaglia (Eds.), Global Comput-
ing. VIII, 377 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smimov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. XI, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Preface

This volume contains a selection of refereed papers from participants of the
workshop “Construction and Analysis of Safe, Secure and Interoperable Smart
Devices” (CASSIS), held from the 10th to the 13th March 2004 in Marseille,

France:
http://www-sop.inria.fr/everest/events/cassis04/

The workshop was organized by INRIA (Institut National de Recherche en
Informatique et en Automatique), France and the University de la Méditerranée,
Marseille, France. The workshop was attended by nearly 100 participants, who
were invited for their contributions to relevant areas of computer science.

The aim of the workshop was to bring together experts from the smart devices
industry and academic researchers, with a view to stimulate research on formal
methods and security, and to encourage the smart device industry to adopt
innovative solutions drawn from academic research.

The next generation of smart devices holds the promise of providing the
required infrastructure for the secure provision of multiple and personalized
services. In order to deliver their promise, the smart device technology must
however pursue the radical evolution that was initiated with the adoption of
multi-application smartcards. Typical needs include:

— The possibility for smart devices to feature extensible computational infras-
tructures that may be enhanced to support increasingly complex applica-
tions that may be installed post-issuance, and may require operating system
functionalities that were not pre-installed. Such additional flexibility must
however not compromise security.

— The possibility for smart devices to achieve a better integration with larger
computer systems, through improved connectivity, genericity, as well as inter-
operability.

— The possibility for smart devices to protect themselves and the applications
they host from hostile applications, by subjecting incoming applications to
analyses that bring strong guarantees in terms of confidentiality or resource
control.

— The possibility for application developers to establish through formal ver-
ification based on logical methods the correctness of their applications. In
addition, application developers should be offered the means to convey to
end-users or some trusted third party some verifiable evidence of the cor-
rectness of their applications.

— The possibility for smart devices to be modeled and proved correct formally,
in order to achieve security evaluations such as Common Criteria at the
highest levels.

VI Preface

In order to address the different issues raised by the evolution of smart de-
vices, the workshop consisted of seven sessions featuring one keynote speaker
and three or four invited speakers:

Trends in smart card research

Operating systems and virtual machine technologies
Secure platforms

Security

Application validation

Verification -

Formal modeling

RSl et

The keynote speakers for this edition were: Eric Vétillard (Trusted Logic),
Ksheerabdhi Krishna (Axalto), Xavier Leroy (INRIA), Pieter Hartel
(U. of Twente), K. Rustan M. Leino (Microsoft Research), Jan Tretmans
(U. of Nijmegen), and J. Strother Moore (U. of Texas at Austin).

In addition, a panel chaired by Pierre Paradinas (CNAM), and further con-
sisting of Jean-Claude Huot (Oberthur Card Systems), Gilles Kahn (INRIA),
Ksheerabdhi Krishna (Axalto), Erik Poll (U. of Nijmegen), Jean-Jacques Quis-
quater (U. of Louvain), and Alain Sigaud (Gemplus), examined the opportuni-
ties and difficulties in adapting open source software for smart devices execution
platforms.

We wish to thank the speakers and participants who made the workshop such
a stimulating event, and the reviewers for their thorough evaluations of submis-
sions. Furthermore, we gratefully acknowledge financial support from Conseil
Général des Bouches-du-Rhone, Axalto, France Télécom R&D, Gemplus Inter-
national, Microsoft Research and Oberthur Card Systems.

November 2004 Gilles Barthe
Lilian Burdy

Marieke Huisman

Jean-Louis Lanet

Traian Muntean

Organizing Committee

Gilles Barthe
Lilian Burdy
Marieke Huisman
Jean-Louis Lanet
Traian Muntean

Reviewers

Cuihtlauac Alvarado
John Boyland
Michael Butler

Koen Claessen
Alessandro Coglio
Adriana Compagnoni
Pierre Crégut
Jean-Michel Douin
Hubert Garavel
Nikolaos Georgantas
Mike Gordon

Chris Hankin

Rene Rydhof Hansen
Klaus Havelund

Lex Heerink

Ludovic Henrio
Charuwalee Huadmai
Thierry Jéron

INRIA Sophia Antipolis, France
INRIA Sophia Antipolis, France
INRIA Sophia Antipolis, France

INRIA DirDRI, France

University de la Méditerranée, Marseille, France

Rajeev Joshi
Florian Kammiiller
Laurent Lagosanto
Yassine Lakhnech
Xavier Leroy
Gerald Liittgen
Anil Madhavapeddy
Claude Marché
Ricardo Medel

Greg Morisett
Laurent Mounier
Christophe Muller
Alan Mycroft

Brian Nielsen

David von Oheimb
Arnd Poetzsch-Hefftner
Erik Poll
Christophe Rippert

Judi Romijn

Vlad Rusu

Peter Ryan

David Sands
Gerardo Schneider
Ulrik Pagh Schultz
David Scott
Robert de Simone
Christian Skalka
Oscar Slotosch
Kim Sunesen
Sabrina Tarento
Hendrik Tews
Mark Utting

Eric Vétillard
Willem Visser
Olivier Zendra
Elena Zucca

Table of Contents

Mobile Resource Guarantees for Smart Devices
David Aspinall, Stephen Gilmore, Martin Hofmann,
Donald Sannella, and Ian Stark

History-Based Access Control and Secure Information Flow
Anindya Banerjee and David A. Naumann

The Spec# Programming System: An Overview
Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte

Mastering Test Generation from Smart Card Software Formal Models
Fabrice Bouquet, Bruno Legeard, Fabien Peureuz, and Eric Torreborre

A Mechanism for Secure, Fine-Grained Dynamic Provisioning
of Applications on Small Devices.coiiiiiiiii i,
William R. Bush, Antony Ng, Doug Simon, and Bernd Mathiske

ESC/Java2: Uniting ESC/Java and JML - Progress and Issues in Building

and Using ESC/Java2, Including a Case Study Involving the Use

of the Tool to Verify Portions of an Internet Voting Tally System
David R. Cok and Joseph R. Kiniry

A Type System for Checking Applet Isolation in Java Card
Werner Dietl, Peter Miiller, and Arnd Poetzsch-Heffter

Verification of Safety Properties in the Presence of Transactions
Reiner Hihnle and Wojciech Mostowski

Modelling Mobility Aspects of Security Policies
Pieter Hartel, Pascal van Eck, Sandro Etalle, and Roel Wieringa

Smart Devices for Next Generation Mobile Services
Chie Noda and Thomas Walter

A Flexible Framework for the Estimation of Coverage Metrics
in Explicit State Software Model Checking
Edwin Rodriguez, Matthew B. Dwyer, John Hatcliff, and Robby

Combining Several Paradigms for Circuit Validation and Verification
Diana Toma, Dominique Borrione, and Ghiath Al Sammane

Smart Card Research Perspectivescooiiiiiiiin....
Jean-Jacques Vandewalle

Author Index

Mobile Resource Guarantees for Smart Devices*

David Aspinall!, Stephen Gilmore!, Martin Hofmann?,
Donald Sannella!, and Ian Stark!

! Laboratory for Foundations of Computer Science, School of Informatics,
The University of Edinburgh
2 Lehr- und Forschungseinheit fiir Theoretische Informatik, Institut fiir Informatik,
Ludwig-Maximilians-Universitdt Miinchen

Abstract. We present the Mobile Resource Guarantees framework: a
system for ensuring that downloaded programs are free from run-time
violations of resource bounds. Certificates are attached to code in the
form of efficiently checkable proofs of resource bounds; in contrast to
cryptographic certificates of code origin, these are independent of trust
networks. A novel programming language with resource constraints en-
coded in function types is used to streamline the generation of proofs of
resource usage.

1 Introduction

The ability to move code and other active content smoothly between execution
sites is a key element of current and future computing platforms. However, it
presents huge security challenges — aggravating existing security problems and
presenting altogether new ones — which hamper the exploitation of its true po-
tential. Mobile Java applets on the Internet are one obvious example, where de-
velopers must choose between sandboxed applets and working within a crippled
programming model; or signed applets which undermine portability because of
the vast range of access permissions which can be granted or denied at any of the
download sites. Another example is open smart cards with multiple applications
that can be loaded and updated after the card is issued, where there is currently
insufficient confidence in available security measures to take full advantage of
the possibilities this provides.

A promising approach to security is proof-carrying code [26], whereby mobile
code is equipped with independently verifiable certificates describing its security
properties, for example type safety or freedom from array-bound overruns. These
certificates are condensed and formalised mathematical proofs which are by their
very nature self-evident and unforgeable. Arbitrarily complex methods may be
used by the code producer to construct these certificates, but their verification by
the code consumer will always be a simple computation. One may compare this
to the difference between the difficulty of producing solutions to combinatorial

* This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.

G. Barthe et al. (Eds.): CASSIS 2004, LNCS 3362, pp. 1-26, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 David Aspinall et al.

problems such as Rubik’s cube or satisfiability, and the ease of verifying whether
an alleged solution is correct or not.

A major advantage of this approach is that it sidesteps the difficult issue of
trust: there is no need to trust either the code producer, or a centralized certifica-
tion authority. If some code comes with a proof that it does not violate a certain
security property, and the proof can be verified, then it does not matter whether
the code (and/or proof) was written by a Microsoft Certified Professional or a
monkey with a typewriter: the property is guaranteed to hold. The user does
need to trust certain elements of the infrastructure: the code that checks the
proof (although a paranoid user could in principle supply a proof checker him-
self); the soundness of the logical system in which the proof is expressed; and, of
course, the correctness of the implementation of the virtual machine that runs
the code — however these components are fixed and so can be checked once and
for all. In any case, trust in the integrity of a person or organization is not a
reliable basis for trusting that the code they produce contains no undiscovered
accidental security bugs! In practice it seems best to take advantage of both
existing trust infrastructures, which provide a degree of confidence that down-
loaded code is not malicious and provides desired functionality, and the strong
guarantees of certain key properties provided by proof-carrying code.

Control of resources (space, time, etc.) is not always recognized as a secu-
rity concern but in the context of smart cards and other small devices, where
computational power and especially memory are very limited, it is a central is-
sue. Scenarios of application which hint at the security implications include the
following:

— a provider of distributed computational power may only be willing to of-
fer this service upon receiving dependable guarantees about the required
resource consumption;

— third-party software updates for mobile phones, household appliances, or
car electronics should come with a guarantee not to set system parameters
beyond manufacturer-specified safe limits;

— requiring certificates of specified resource consumption will also help to pre-
vent mobile agents from performing denial of service attacks using bona fide
host environments as a portal;

and the one of most relevance in the present context:

— a user of a handheld device, wearable computer, or smart card might want
to know that a downloaded application will definitely run within the limited
amount of memory available.

The usual way of dealing with programs that exceed resource limits is to monitor
their usage and abort execution when limits are exceeded. Apart from the waste
that this entails — including the resources consumed by the monitoring itself —
it necessitates programming recovery action in the case of failure.

The Mobile Resource Guarantees (MRG) project is applying ideas from
proof-carrying code to the problem of resource certification for mobile code. As
with other work on proof-carrying code for safety properties, certificates contain

Mobile Resource Guarantees for Smart Devices 3

formal proofs, but in our case, they claim a resource usage property. Work in
MRG has so far concentrated mainly on bounds on heap space usage, but most
of the infrastructure that has been built is reusable for bounds on other kinds
of resources. One difference between MRG and other work on proof-carrying
code is that proof certificates in MRG refer to bytecode programs rather than
native code. One bytecode language of particular interest is JVML [22] but there
are others, including the CIL bytecode of the Microsoft .NET framework [24],
JavaCard [33], and the restricted version of JVML described in [32]. An elegant
solution to the tension between the engineering requirement to make theorem
proving and proof checking tractable, while at the same time remaining faith-
ful to the imperative semantics of these underlying bytecode languages, is the
Grail intermediate language (see Sect. 5) which also targets multiple bytecode
languages. :

One of the central issues in work on proof-carrying code is how proofs of
properties of code are produced. One traditional approach is for object code and
proofs to be generated from source code in a high-level language by a certifying
compiler like Touchstone [10], using types and other high-level source informa-
tion!. The MRG project follows this approach, building on innovative work on
linear resource-aware type systems [14,15], whereby programs are certified by
virtue of their typing as satisfying certain resource bounds. For instance, in a
space-aware type system, the type of an in-place sorting function would be dif-
ferent from the type of a sorting function, like merge sort, that requires extra
working space to hold a copy of its input; still different would be the type of
a sorting function that requires a specific number of extra cells to do its work,
independent of the size of its input. A corresponding proof of this behaviour
at the bytecode level can be generated automatically from a typing derivation
in such a system in the course of compiling the program to bytecode. It even
turns out to be possible to infer heap space requirements in many situations
[16]. This work has been carried out in a first-order ML-like functional language,
Camelot (described in Sect. 3), that has been developed as a testbed by the
MRG project. The underlying proof-carrying code infrastructure operates at
the bytecode (Grail) level; Camelot is just an example of a language that a code
producer might use to produce bytecode together with a proof that it satisfies
some desired resource bound.

This paper is an overview of the achievements of the MRG project as of the
summer of 2004. It is self-contained, but due to space limitations many points
are sketched or glossed over; full technical details can be found in the papers
that are cited below. The main contribution of the paper is a presentation of the
overall picture into which these technical contributions are meant to fit.

In the next section, we describe the overall architecture of the MRG frame-
work, including the réle of the two language levels (Grail and Camelot), and how
MRG-style proof-carrying code fits with standard Java security. Sections 3 and 4

1 A slightly different approach was taken by the work on Typed Assembly Language
([25] and later), where a fixed type system is provided for the low-level language,
and certification amounts to providing a typing in this low-level type system.

4 David Aspinall et al.

focus on the “upper” language level, introducing Camelot and space-aware type
systems. Section 5 focuses on the “lower” language level, describing the Grail
intermediate language and the way that it provides both a tractable basis for
proof and relates to (multiple) imperative bytecode languages. Section 6 ties
the two language levels together by explaining the logic for expressing proofs
of resource properties of bytecode programs and the generation of proofs from
resource typings. A conclusion outlines the current status of the MRG project
and summarizes its contributions.

2 Architecture and Deployment

In this section we discuss the architecture of a smart device-based system which
deploys the technology of the MRG project in a novel protocol for certifying
resource bounds on downloaded code from an untrusted source. Our protocol is
designed so that it can be integrated with the built-in mechanism for Java byte-
code checking, via the Security Manager. In the JVM, the Security Manager is
entrusted with enforcing the security policy designated by the user, and ensuring
that no violations of the security policy occur while the code runs.

In our protocol, a Resource Manager is responsible for verifying that the
certificate supplied with a piece of code ensures that it will execute within the
advertised resource constraints. A Proof Checker is invoked to do this. If the
check succeeds, we have an absolute guarantee that the resource bounds are
met, so it is not necessary to check for resource violations as the code runs. Our
Resource Manager is not a replacement for the standard Java Security Manager
but instead forms a perimeter defense which prevents certain non-well-behaved
programs from being executed at all.

The Mobile Resource Guarantees framework provides a high-level language,
Camelot, and a low-level language, Grail, into which this is compiled. (Camelot is
presented in more detail in Sect. 3 and Grail is discussed in Sect. 5.) Application
developers work in the high-level language and interact with resource typing
judgements at the appropriate level of abstraction for their realm of expertise.
For this approach to be successful it is necessary for the compilation process
to be transparent 23] in that the resource predictions made at the high-level
language level must survive the compilation process so that they remain true at
the low level. This places constraints on the expressive power of the high-level
language, prohibiting the inclusion of some more complex language features. It
also places constraints on the nature of the compilation process itself, requiring
the compiler to sometimes sacrifice peak efficiency for predictability, which is
the familiar trade-off from development of real-time software.

A consumer of proof-carrying code (such as Grail class files with attached
proofs of resource consumption) requires an implementation technology which
enforces the security policy that they specify. The Java agents introduced in the
J2SDK version 1.5.0 provide the most direct way to implement these policies.
An agent is a “hook” in the JVM allowing the PCC consumer to attach their
own implementation of their security policy as an instance of a general-purpose
PCC Security Manager.

Mobile Resource Guarantees for Smart Devices 5

Java agents can be used for several resource-bound-specific purposes:

1. to query the attached proof and decide to refuse to load, build and execute
the class if necessary;

2. to apply per-class or per-package use restrictions by modifying each method
in the class with entry and exit assertions that inspect resource consumption
measures; and

3. to apply per-method constraints on heap-allocation and run-time by instru-
menting method bodies.

Each of these checks can be unloaded at JVM instantiation time to allow a
mobile-code consumer to vary their security policy between its tightest and laxest
extrema.

3 Space Types and Camelot

This section describes the high-level language Camelot and the space type system
which together allow us to produce JVM bytecode endowed with guaranteed and
certified bounds on heap space consumption.

Syntactically, and as far as its functional semantics is concerned, Camelot is
essentially a fragment of the ML dialect O’Caml [29]. In particular, it provides
the usual recursive datatypes and recursive (not necessarily primitive recursive)
definition of functions using pattern matching, albeit restricted to flat patterns.

One difference to O’Caml is that Camelot compiles to JVM bytecode and
provides (via the O’Camelot extension [36]) a smooth integration of genuine Java
methods and objects.

The most important difference, however, lies in Camelot’s memory model.
This uses a freelist, managed directly by the compiled code, rather than relying
exclusively on garbage collection. All non-primitive types in a Camelot program
are compiled to JVM objects of a single class Diamond, which contains appro-
priate fields to hold data for a single node of any datatype. Unused objects are
released to the freelist so that their space can be immediately reused. The com-
piler generates the necessary code to manage the freelist, based on some language
annotations described below.

This conflation of types into a single allocation unit is standard for memory
recycling in constrained environments; there is some loss of space around the
edges, but management is simple and in our case formally guaranteed to succeed.
If required, we could duplicate our analysis to manage a range of cell sizes in
parallel, but we have not yet seen compelling examples for this.

3.1 The Diamond Type

Following [14], Camelot has an abstract type denoted <> whose members are
heap addresses of Diamond-objects. The only way to access this type is via
datatype constructors. Suppose for example that we have defined a type of in-
teger lists as follows?

2 The annotation ! ensures that the constructor Nil is represented by a null pointer
rather than a proper object.

6 David Aspinall et al.

type iList = INil | Cons of int * iList

If this is the only type occurring in a program then the Diamond class will look
as follows (in simplified form and Java notation):

public class Diamond extends java.lang.Object {
public Diamond RO;
public int V1,

}

If, say, x1 is an element of type iList, hence compiled to an object reference of
type Diamond, we can form a new list x2 by

let x2 = Cons(9,x1) in ...

The required object reference will be taken from the aforementioned freelist
providing it is non-empty. Otherwise, the JVM new instruction will be executed
to allocate a new object of type Diamond.

If, however, we have in our local context an element d of type <> then we
can alternatively form x2 by

let x2 = Cons(9,x1)@d in ...

thus instructing the compiler to put the new Cons cell into the Diamond object
referenced by d, whose contents will be overwritten.

Using these phrases in the context of pattern matching provides us with
elements of type <> and also refills the freelist. A pattern match like

match x with
Cons(h,t)@d —> ...

is evaluated by binding h, t and d to the contents of the “head” (h) and “tail”

(t) fields and the reference to x itself (d). Thus, in the body of the pattern match

d is an element of type <> available for constructing new Cons cells.
Alternatively, the syntax

match x with
Cons(h,t)@_ —> ...

returns the cell occupied by x to the freelist for later use.
Finally, an unannotated pattern match such as

match x with
Cons(h,t) —> ...

performs ordinary non-destructive matching.

3.2 Linear Typing

When a list x is matched against a pattern of the form Cons(h,t)@d or Cons(h,t)@_
it is the responsibility of the programmer to ensure that the list x itself is not

Mobile Resource Guarantees for Smart Devices 7

used anymore because its contents will be overwritten subsequently. For this
purpose, the Camelot compiler has an option that enforces (affine) linear use
of all variables. If all variables are used at most once in their scope then there
can in particular be no reference to x in the body of the pattern match above.
In [14] a formal proof is given that such a program behaves purely functionally,
i.e., as if the type <> was replaced by the unit type. Linear typing is, however,
a fairly crude discipline and rules out many sound programs. In [6] we present
an improved type system that distinguishes between modifying and read-only
access to a data structure and in particular allows multiple read-only accesses,
which would be ruled out by the linear discipline. This is not yet implemented
in Camelot. Alternatively, the programmer can turn off the linear typing option
and rely on his or her own judgement, or use some other scheme.

3.3 Extended Example

The code in Figure 1 shows a standalone Camelot application containing a func-
tion start : string list —> unit which serves as an entry point. It is assumed
that the program is executed by applying start to an (ordinary) list of strings
obtained, e.g., from the standard input.

We see that the function ins destroys its argument, whereas the sorting func-
tion sort : ilist —> ilist, as well as the display function show_list : ilist —> unit,
each leave their argument intact.

3.4 Certification of Memory Usage

The idea behind certification of heap-space usage in MRG is as follows: given a
Camelot program containing a function start : string list —> unit, find a linear
function s(z) = ax + b with the property that evaluating (the compiled version
of) start on an input list of length n will not invoke the new instruction provided
that the freelist contains initially no less than s(n) cells.

Once we have such a linear function s we can then package our compiled
bytecode together with a wrapper that takes input from stdin or a file, initialises
(using new) the freelist to hold s(n) cells where n is the size of the input, and
then evaluates start.

3.5 Inference of Space Bounds

Such linear space bounds can efficiently be obtained using the type-based anal-
ysis described in [16] which has subsequently been implemented and tuned to
Camelot in [17]. In summary, this analysis infers for each function contained
in the program a numerically annotated type describing its space usage. The
desired bounding function can then be directly read off from the type of start.

The result of running the analysis on our example program is given in Fig-
ure 2. The entry

ins : 1, int —> iList[0|int,#,0] —> iList[0|int,#,0], O;
T

