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PREFACE

The serial publication ‘“Advances in Heat Transfer” is designed to
fill the information gap between'the regularly scheduled journals and
university level textbooks. The general purpose of this series is to
present review articles or monographs on special topics of current
interest. Each article starts from widely understood principles and in
a logical fashion brings the reader up to the forefront of the topic. The
favorable response to the volumes published to date by the international
scientific and engineering community is an indication: of how successful
our authors have been in fulfilling this purpose. ‘

The editors are pleased to announce the publication of Volume 9
and wish to express their appreciation to the current authors who have
so effectively maintained the spirit of the series.
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2 D. JAPIKSE
L. Introduction

A. CLASSIFICATION AND APPLICATION OF
THERMOSYPHON SYSTEMS

A thermosyphon! is a circulating fluid system whose motion is caused
by density differences in a body force field which result from heat transfer
Mechanical inputs have so far been excluded from all thcrmos'yphon
studies. Davies and Morris (24) have suggested that thermosyphons can
be categorized according to (a) the nature of boundaries (is the system
open or closed to mass flow?), (b) the regime of heat transfer (is the
process purely natural convection or is it mixed natural and forced?
convection ?), (c) the number or type of phases present (is the system in a
single- or two-phase state ?) and (d) the nature of the body force (is it
gravitational or rotational ?)

Unfortunately a definition as broad as the one given above would
require the preparation of a book, not a review article, to do it justice.
In fact, the above definition, suggested by Davies and Morris in 1965,
is so broad as to include all natural convection processes, plus others,
and thus it is well to note that all systems to which the name thermosyphon
has been applied in formal studies (except the discussion by Davies and
Morris (24)) are in fact systems which have the intrinsic function of
removing heat from a prescribed source and transporting heat and mass
over a specific path (frequently a recirculating flow) and rejecting the
heat and or mass to a prescribed sink. That is, the path of the circulating
flow which transports the thermal energy is or can be totally prescribed.
Thus, for example, while ordinary free convection from plates and
cylinders may tacitly meet these criteria, they generally are of interest
only from the standpoint of rejecting heat and the subsequent trans-
porting is of secondary or of little interest. Indeed, in industrial appli-
cations the path of heat flow in such a free convection process is rarely
prescribed and will vary considerably. Furthermore, thermosyphon flows
are intrinsically driven by thermal buoyancy forces, either locally or in an
overall sense. A simple loop flow may well be the result of local buoyancy
forces alone, but a multibranched flow circuit can easily incorporate
sections in which the flow direction is contrary to the local buoyancy
force resulting from pressures created by the overall system buoyancy
forces. Based on these factors, the following definition will be used in

! The origin of the name “thermosyphon’’ is uncertain; however, the name appeared
as early as 1928 in the sales literature of Deere and Co. to aptly describe their cooling
system.

2 Mixed convection requires a dividing partition across which pressure differences can
be established.
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this review (roughly following the definition used also by Lock (82)):
A thermosyphon is a prescribed circulating fluid system driven by thermal
buoyancy forces. This definition includes all basic studies to which the
name thermosyphon has been applied in the literature (with the exception
of parts of Davies and Morris (24), which is not a study of any particular
system but rather a general discussion) and clearly defines a class of
thermal systems which have become industrially important. The
preceeding distinction notwithstanding, Davies’ subcategories are still
very convenient and will be used.

The most common industrial thermosyphon applications include gas
turbine blade cooling (3, 9, 14, 20-22, 27, 33, 36, 37, 3942, 44, 54, 65,
67, 93, 97, 98, 101, 107, 112, 113), electrical machine rotor cooling
(25, 38, 95, 96), transformer cooling (68, 71), nuclear reactor cooling
(23, 48, 92, 114), heat exchanger fins (73, 74, 85), cryogenic cool-down
apparatus (10, 11, 43, 69), steam tubes for bakers’ ovens (94), and cooling
for internal combustion engines (70, /11, 115). Other intriguing thermo-
syphon (or very closely related) problems include the convection in the
earth’s mantle (/02), the temperature distribution in earth drillings in
steam power fields (28), plus the use of thermosyphons for the preser-
vation of permafrost under buildings in the Canadian northland
(66, 76, 84), and the maintenance of icefree navigation buoys (74). A
variety of thermosyphon characteristics are responsible for the appli-
cations found to date and can lead to numerous future applications. For
example, a thermosyphon can behave as a thermal conductor with either
a small or a large thermal impedence depending on system choice; it can
be used as a thermal diode or rectifier (43, 74); or even as a thermal
triode (43), permitting a variation in heat flow based on small changes
in temperature. Table I shows a large variety of thermosyphons which
have been studied and/or are in use today. The application of thermo-
syphons to gas turbine blade coodling has clearly played a key role in
thermosyphon research and will receive special attention later.

The first section of this review considers a common single-phase,
natural-convection open system in the form of a tube open at the top
and closed at the bottom; the second section considers a simple single-
phase, natural-convection closed system in the form of a tube closed at
both ends; the third section considers various single-phase, mixed-
convection thermosyphons, so-called closed-loop thermosyphons; the
fourth section reviews two-phase® and critical state thermosyphons and

3 A note about semantics is in order. These systems have occasionally been called
“wickless heat pipes” which is unfortunate since a wick is an integral and important
part of a heat pipe. Any such system without a wick should certainly be considered
a two-phase thermosyphon.
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finally a review of the turbine blade cooling problem is given in the
fifth section. It is hoped that the review of these systems, which includes
all basic thermosyphon studies, will provide a background of infor-
mation for related and new thermosyphon problems.

However, before examining these systems it is profitable to consider
the matter of suitable property modeling in all thermosyphon problems.

B. PrROPERTY MODELING FOR THERMOSYPHON SYSTEMS

With the exception of density, all thermosyphon analyses to date have
assumed constant properties; hence it is quite important to make a wise
choice of reference temperature; indeed, poor choices have led to very
sizeable errors in calculating heat transfer. T'able IT shows a few property
variation ratios which illustrate the nature of variations possible.

Table II shows clearly that the most important property variation for
ordinary liquids is that of viscosity. Hence Lock (82) neglected all
property variations except u (and of course included p(7')) and found that
the integral momentum and energy equations can be reduced directly
[see Eq. (9)] to show that the wall temperature is the appropriatc property
reference temperature. This somewhat unusual reference temperature
has fortunately been used in nearly every open thermosyphon study. It
might also be mentioned that this choice is also the most practical since
the use of, say, the core temperature, is often difficult to predict. In one
case, Foster (34), the core temperatures were measured and a film
temperature employed; regrettably this choice led to the conclusion or
result that Nu decreased with inereasing Pr, contrary to all other thermo-
syphon findings and general free-convection knowledge. In short, the
use of the core temperature is undesirable; the wall temperature has
proven most reliable.

For treating liquids in the closed thermosyphon, it has been shown
by Japikse and Winter (59, 60) that the wall temperature in each tube
half should be used to model the flow process in that tube half. This 1s
of considerable importance because not only can heat transfer rates be in
error by as much as 509, if only one reference temperature is employed,
but it is occasionally impossible to recognize the mode of flow which
exists if this rule is not employed (see Japikse (62) for a discussion of
two such cases).

For gases, Table 11 shows that property variations do not appear to be
too large; but they are sufficiently subtle to make up the difference.
Consider for the moment the Gr number, now based on the film
temperature for purposes of discussion:

Gr — gB ATa'}?
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