

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

486

J. van Leeuwen N. Santoro (Eds.)

Distributed Algorithms

4th International Workshop
Bari, ltaly, September 24—26, 1990
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris
Tokyo Hong Kong Barcelona Budapest

Editorial Board

D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Volume Editors

Jan van Leeuwen

Department of Computer Science, University of Utrecht
Padualaan 14, P.O. Box 80.089

3508 TB Utrecht, The Netherlands

Nicola Santoro
School of Computer Science, Carleton University
Ottawa, Canada K1S 5B6

CR Subject Classification (1991): C.2.2,C.2.4, D.4.4,D.4.4-5, F11, F2.2

ISBN 3-540-54099-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-54099-7 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. Allrights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms orin other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1985, in its current version, andaoopyﬁghtleemustalwaysbepaid.
Vnolaﬁonsfallundermepmsewﬁonndofﬂ\eGonnanCopyrightLaw.

© Springer-Verlag Berlin Heidelberg 1981

Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.

2145/3140-543210 — Printed on acid-free paper

Preface

The 4th Internatlona.l Workshop on Distributed Algonthms (WDAG 90) was organized by the
Istltuto di Scnenze e dell’” Ihformazxone of the Umversxty of Baﬁ (Italy) “and. ﬁl;eld in Serra Alimini
(nea.r Otranto), some 200 kilometers southeast of Bari along the beautiful Adriatic coast, September
24-26, 1990. The workshop was intended as a forum for researchers, students and other interested
persons to discuss the recent resufts and trends in the design a.nd analysis of distributed algorithms
for communication networks (i.e., on graphs) and decentralized systems. The earlier workshops on
Distributed Algorithms were held in Ottawa (1985, proceedings published by Carleton University
Press), Amsterdam (1987, see Lecture Notes in Computer Science, Vol. 312), and Nice (1989, sce
Lecture Notes in Computer Science, Vol. 392).

Papers were solicited describing original results in all areas of distributed algorithins and their
applications including, e.g. distributed combinatorial algorithms, distributed optimization algo-
rithms, distributed algorithms on graphs, distributed algorithms for decentralized systems, dis-
tributed data structures, distributed algorithms for control and communication, design of nct-
work protocols, routing algorithms, fail-safe and fault-tolerant distributed algorithms, distributed
database techniques, algorithms for transaction management, replica-control algorithms, and other

related fields. The program committee for the workshop consisted of

D. Dolev (IBM Almaden Research Center and Hebrew Universi ty),

F. Mattern (University of Kaiserslautern),

N. Santoro (Carleton Univérsity, Ottawa), co-chairman

P. Spirakis - (Computer Technology Institute, Patras, and New York University),
R.B. Tan (University of Oklahoma, Chickasha, and University of Utrecht),

S. Toueg (Cornell University, Ithaca),

J. van Leeuwen (University of Utrecht), co-chairman
. P.M.B. Vitanyi (CWI and University of Amsterdam),
S. Zaks (Technion, Haifa).

Close to sixty papers were submitted out of which the program committee selected twenty-cight
papers for presentation in the workshop. The selection reflects several current direct‘ions of research
in the area of distributed algorithms, although certainly not all aspects of the field could be covered
in the three-day workshop. The present volume contains the revised version of all papers presented
in the workshop. The revised versions are based on the comments and suggestions received. by the

authors during and after the workshop. Several papers aire in the form of preliminary reports on

v

continuing research. The papers in this volume should give a good impression of the current work
in distributed a.lgorithms'and stimulate further research. The sessions at the workshop were chaired
by: Friedemann Mattern, Nicola Santoro, Paul Spirakis, Richard Tan, Sam Toueg/Gil Neiger, Jan
van Leeuwen, Paul Vitanyi, and Shmuel Zaks. .

We are grﬁteful to the Centre for Parallel and Distributed Computing (PARADISE) of Carleton
University (Ottawa, Canada) and the bepartment of Computer Science of the University of U trecht
(Utrecht, the Netherlands) for supporting the organization of the workshop, and to the Centro In-
ternazionale Congressi S.r.l. and its staff for the superb local arrangements. The workshop was
partly supported by IBM (Italy), Siemens (Italy) and by the Banca Vallone/Gruppo Ambrosiano.
We also thank Annerie Deckers (Department of Computer Science, University of Utrecht) for her

invaluable assistance during the preparation of the workshop.

Utrecht and Ottawa/Bari : Jan van Leeuwen and Nicola Santoro

March 1991 Co-Chairmen WDAG 90

CONTENTS

Selt-Stabiliging Ring ORentalion| 5. . vice ot ouimans s b o shomse e s semats sl e e o s e s Hrrvaee 1
A. Israeli and M. Jalfon (Technion, Haifa)

Memory-Efficient Self-Stabilizing Protocols for General Networksoooeooieooioeonnon .. 15
Y. Afek (ATE&T Bell Laboratories and Tel-Aviv University), S. Kutten and
M. Yung (IBM T.J. Watson Research Center)

On the Computational Power Needed to Elect a Leadercovveirvrninin. L $aoinindl: snssaaldlh 29
A. Itai (Technion, Haifa)

Spanning Tree Construction for Nameless Networks vo'e dprie e R Plesd bidai bl Lt .41
1. Lavallée and C. Lavault (INRIA, Rocquencourt)

A Linear Fault-Tolerant Naming AIZOTithINe.uvseeseiunnsinsssosisseonese e 57
J. Beauquier (Université Paris 11), P. Gastin (Université Paris 6) and
V. Villain (Université de Picardie, Amiens)

Distributed Data Structures: A Complexity-Oriented View:ie.oeiiieiersiimnsnesinnnss 71
D. Peleg (The Weizmann Institute, Rehovot)

An Improved Algorithm to Detect Communication Deadlocks in Distributed SYBtOmE: i s enians 90
B. Kréger (University of Osnabriick), R. Liling, B. Monien (University of Paderborn)
and O. Vornberger (University of Osnabriick)

On the Average Performance of Synchronized Programs in Distributed Networks_ 102
S. Rajsbaum and M. Sidi (Technion, Haifa)

Distributed Algorithms for Reconstructing MST after Topology ChAnEe. « . i e sbath . sunisrcsk o 102
J. Park, T. Masuzawa, K. Hagihara, and N. Tokura (Osaka University)

Efficient Distributed Algorithms for Single-Source Shortest Paths and Related Problems
S e e USRI e cnl I e S e e s 133
R. Janardan and S. Wing Cheng (University of Minnesota, Minneapolis)

Stepwise Development of a Distributed Load Balaticing AAGOHINM «y .o vivin vsiomnsions st e vns 151
P. Gronning, T. Quist Nielsen and H. H. Lovengreen (Technical University of Denmark,
Lyngby) ‘

’

Greedy Packet Scheduling sl RN - Vovate - i b1 TR i 169
L. Cidon, S. Kutten (IBM T.J. Watson Research Center), Y. Mansour (MIT) and
D. Peleg (The Weizmann Institute, Rehovot)

Efﬁcient Mechanism for Fairness and Deadlock-Avoidance in High-Speed Networks 192
Y. Ofek and M. Yung (IBM T.J. Watson Research Center)

\4

Weak Consistency and Pessimistic Replica Controlcoovieeeeeeoi 228
A. Sandoz and A. Schiper (Ecole Polytechnique Fédérale de Lausanne)

Localized-Access Protocols for Replicated Databasescc.oieeuununrennee i, . 245
D. Agrawal and A. El Abbadi (University of California, Santa Barbara)

Weighted Voting for Operation Dependent Management of Replicated Data 263
; M. Obradovic and P. Berman (The Pennsylvania State University)

Early-Stopping Distributed Bidding and Applicationsooe.oooiio . 304
N. Budhiraja, A. Gopal and S. Toueg (Cornell University, Ithaca)

Fast Consensus in Networks of Bounded Degree L ey 321
P. Berman (The Pennsylvania State University) and J. A. Garay (IBM T.J. Watson
Research Center)

Common Knowledge and Consistent Simultaneous Coordinationo..ooeiooeneee 334

G. Neiger (Georgia Institute of Technology, Atlanta) and M. R. Tuttle (Cambridge Research
Laboratory)

Agreement on the Group Membership in Synchronous Distributed Systems
R. de Lemos and P. D. Ezhilchelvan (University of Newcastle upon Tyne)

Tight Bounds on the Round Complexity of Distributed 1-Solvable Tasks 373
O. Biran, S. Moran and S. Zaks (Technion, Haifa)

A Time-Randomness Tradeoff for Communication Complexity 390
R. Fleischer (University of the Saarland, Saarbriicken), H. Jung (Humboldt University, :
Berlin) and K. Mehlhorn (University of the Saarland, Saarbricken)

Bounds on the Costs of Register Implementationsioooeeeiiiinnnnnnennnnnnn 402
S. Chaudhuri (University of Washington, Seattle) and J. Welch (University of
North Carolina, Chapel Hill)

A Bounded First-In, First-Enabled Solution to the 1-Exclusion Problem00oovooi . 422
Y. Afek (ATET Bell Laboratories and Tel-Aviv University), D. Dolev (IBM Almaden
Research Center and Hebrew University), E. Gafni (Tel-Aviv University and UCLA 9
M. Merritt (AT&T Bell Laboratories) and N. Shavit (IBM Almaden Research Center
and Stanford University)

T B S T e e Tl T el N g = e el Soatesd 34 e 432

Author Indexcuiceiseenee. i ES SR HURIH UL IAGL) (908 usedbuie bt e S 433

Self-Stabilizing Ring Orientation

Amos Israeli * Marc Jalfon ?
Dept. of Electrical Engineering Dept. of Computer Science
Technion — Israel Technion — Israel

and Intel — Haifa, Israel

Abstract

A self-stabilizing system is a distributed system which can be started in any possible global state.
Once started the system regains its consistency by itself, without any kind of an outside intervention.
A 7ing is a distributed system in which all processors are connected in a ring. A ring is oriented
if all processors in the ring agree on common right and left directions. A protocol is uniform if all
processors use the same program.

In this paper we answer the following question: Does a uniform self stabilizing protécol for ring
orientation exist? We begin the presentation by answering this question negatively for deterministic
protocols. Then we present a randomized uniform self stabilizin g protocol for ring orientation. When
the protocol stabilizes all processors agree upon a “right” (privileged) direction. The protocol weiks
for a ring of any size and even tolerates dynamic additions and removals of processors as lciiyg as
the ring topology is preserved. The number of states of each processor is O(1), and its stabilization
time is O(n?), where n is the number of processors in the system.

1 Intrdduction

A self-stabilizing system is a distributed system which can be started in any possible global state.
Once started the system regains its consistency by itself, without any kind of an outside intervention.
Two advantages of self stabilizing systems are:

o Self stabilizing systems need not be initialized globally. Each component can be started sepa-
rately and in an arbitrary state. The system will self-stabilize into a legitimate configuration.

® The self stabilization property makes the system tolerant to transient bugs, bugs in which the
state of a component is changed spontaneously while the component is still correct.

A ring is a distributed system in which all processors arve connected in a circle. A ring is oriented
if all processors in the ring agree on common right and left directions. A protocol is uniform if all
processors use the same program. A common problem in distributed protocols is symmetry breaking.

*Partially supported by Technion VPR Funds - Japan TS Research Fund and B. & G. Greenberg Research Fund
(Ottawa).
Partially supported by a Gutwirth fellowship.

Almost all known self-stabilizing protocols for rings, e.g. [Di-74], [BGW-87], [Bu-87], present self
stabilizing protocols for mutual exclusion. In order to avoid dealing with symmetry breaking they
make two strong assumptions:

non-uniformity: There is a single “special” processor whose program is different from the program
of the rest of the processors.

orientation: The ring is oriented.

The work of of [DIM-89] introduces the use of registers for communication between processors.
Using registers they design a non uniform self stabilizing protocol for mutual exclusion for general
graphs and in particular, for unoriented rings. In [Di-74], Dijkstra has observed that no deterministic
uniform self stabilizing protocol for mutual exclusion for rings exists. In [IJ-89] we use randomization
to break symmetry and present a randomized uniform self stabilizing mutual exclusion protocol
for oriented rings. Thus orientation can be given up in the presence of non-uniformity; while for
randomized protocols non-uniformity can be ‘given up in the presence of orientation. It is natural to
ask whether both assumptions can be dispensed simultaneously.

In this paper we answer the following question: Does a uniform self stabilizing protocol for ring
orientation ezist? We begin the presentation by answering this question negatively for deterministic
protocols. Then we present a randomized self stabilizing uniform protocol for rigg orientation. When
the protocol stabilizes, all processors agree upon a “right” (privileged) direction. The protocol works
for a ring of any size and even tolerates dynamic additions and removals of processors as long as
the ring topology is preserved. The number of states of each processor is O(1). The expected
stabilization time is O(n?), where n is the number of processors in the system.

The protocol is composed of two “levels”, each level consists of a self stabilizing protocol. On
the lower level all edges of the ring are directed, not necessarily in a consistent way. Each edge is
directed separately by a randomized protocol which is run by the processors at its endpoints. The
higher level of the protocol is a deterministic protocol for orientation of a directed ring (that is a ring
whose edges are directed). The final protocol is obtained by using the technique of fair combination
of self stabilizing protocols due to [DIM-89].

Recently the works of [BP-88] and [1J-89] presented uniform self stabilizing protocols for oriented
rings. The protocol of [BP-88] works on prime rings in which no symmetric global states exist. The
work of [IJ-89] uses randomization to break symmetry. The present protocol enables execution of
any uniform self stabilizing protocol for oriented rings on any ring. This work together with [I1J-89]
are the first to introduce randomization to self stabilizing protocols in which processors communicate
using shared memory. A randomized self stabilizing version of the alternating bit protocol appears
in [AB-89]. The protocol of [AB-89] uses message passing for communication.

The rest of this paper is organized as follows: in Section 2 the formal model and requirements
for self-stabilization and ring orientation are presented. Some impossibility results are brought in
Section 3. In Section 4 we present a uniform self-stabilizing protocol for orienting a ring. Concluding
remarks appear in Section 5.

2 Model and Requirements

A uniform ring consists of n identical processors, denoted by Py, P, ..., P,_;. Each processor is
a randomized finite state machine. Processors are anonymous, they do not have identities. The
subscripts 0,1,...,n — 1 are used for ease of nctation only. Each processor resides on a node of the
system’s communication ring. Two processors residing on neighboring nodes are called neighbors.

3

Neighbors communicate using registers. If e is an edge of the ring between processors P; and P,
then e is realized by two registers r;; in which P; writes and from which P; reads, and r;; in which
P; writes and from which P; reads. Registers in which a processor P writes are referred to as P’s
registers. When all edges of the ring are undirected (directed) we call this ring undirected (directed
). The edges of the ring can be cither directed or undirected. When an edge of the ring is directed
the two processors at its endpoints agree on its direction, one is designated as the edge’s “head”
while the other is the edge’s “tail”. An undirected edge is symmetric with respect to its endpoints.
In this work the direction of edges is used solely for symmetry breaking; communication is allowed
in both directions of an edge regardless of whether it is directed or undirected.

A processor is a finite state machine with state set M and transition function §. The arguments of
§ are the state of the processor and the values it reads from the registers of its neighbors. Whenever a
processor is activated it executes a single alomic step which is determined by the transition function
5. In a single atomic step a processor may read the registers of some of its neighbors, write in some
of its registers and then move to its new state. The “size” of each step depends on the type of the
adversary and will be discussed below. The transition function § can be randomized; in this case
it may enable more than one transition. The transition which is actually executed is chosen with
equal probability. A uniform protocolis a triplet < G, M, > where G is a family of communication
graphs, M and § are the state set and transition function, common to all processors, respectively.
If the function & is randomized the protocol is randomized. ,

The global state of a uniform n processor system is described by its configuration. A configuration
of a system is an n-tuple ¢ = (go,q1,- - -, ¢n—1) Where g € M for 0 € 1 < n—1. A processor P
is enabled in configuration ¢ if §(g,71,72,...) # ¢, where g is the state of P in ¢ and r1,79,...
are the values read by P from the registers of its neighbors (for randomized protocols we require
{8(gy 71,725+)} # {g}). If P is not enabled, it is said to be disabled. A configuration c is a deadlock
configuration if no processor is enabled in c.

The behavior of real life distributed systems is modeled by the interleaving model. Processor
activity is managed by a scheduler. To ensure correctness of the systems, we regard the scheduler
as an adversary. We let the scheduler choose its activated processors on line using processor states
as its input. We do not allow the scheduler to use the results of future coin tosses, as'this may
nullify the extra strength added to the system by randomization. Whenever the adversary activates
a processor, the processor executes a single atomic step. The more freedom the adversary has in
choosing its activated processors and the smaller the atomic step is, the stronger the adversary is.
We hereafter list the most common t¥pes of adversaries used in the literature:

(a) The weakest adversary activates processors in sequence, one after the other. Whenever a pro-
cessor is activated it reads the registers of all its neighbors and then it moves to a new state
while writing in all its tegisters. This adversary is known as Central Demon.

(b) A stronger adversary which is also known as Distributed Demon can activate any subset of the
system’s processors. together. Whenever a set of processors is activated by the adversary, all
activated processors simultaneously read all the registers of their neighbors. Subsequently all
activated processors move to their new state while writing in all their registers.

(c) An even stronger adversary is the Read/Write Demon. In a single atomic step it activates a
single processor whjc__;h cither reads from a single register, or writes into a single register (but
not both). :

An adversary is proper if it activates only enabled processors as long as the system is not in a
deadlock configuration. In this paper we use the proper distributed demon as the adversary. An
ezecution of a system is a list of configurations ¢',¢c?,... where each configuration, ¢! is obtained

from the previous configuration, ¢, by a single activation of some set of processors. The list of
subsets of processors activated by the scheduler constitutes a schedule.

We proceed by defining the self-stabilization requirements for randomized distributed systems.
The set of all possible configurations is denoted by C. Let L C C be a set of configurations of a
given distributed system. L is ealled the set of legitimate configurations of the system. A system is
self-stabilizing with respect to L if the following requirements are satisfied:

deadlock - Every deadlock configuration of the system is in L.

closure - For every ¢ € L, and for every ¢ € C, il ¢ is reached from ¢ by a single transition
then ¢ € L. (Once the system reaches a legitimate configuration, it will always remain in a
legitimate configuration). ' :

randomized no livelock - There is a function f from the natural numbers to the interval [0, 1]
satisfying lim g—oo f(k) = O such that for every initial configuration and for every proper
scheduler, the probability that the k-th configuration reached is in L is 1 — f(k).

«

Note: In this definition two common requirements are amended. The no deadlock requirement

is replaced by the deadlock requirement which allows legitimate deadlock configurations. The

(deterministic) no livelock requirement is replaced by the slightly relaxed randomized no livelock

requirement.

In ring systems each processor has two neighbors. The processor can internally distinguish
between a first neighbor and a second neighbor. Deciding which neighbor is the first and which one
is the second is done by the hardware, the correctness and complexity of a protocol should not be
affected by any possible assignment of neighbors as first and second. We arbitrarily choose to number
processors clockwise (although in unoriented rings processors do not “know” what “clockwise” is).
For any processor P;, P,y (Pi-1) denotes the clockwise successor (predecessor) of P;, whose subscript
isactuallyi+1 (modn) (i—1 (modn)).

An orientation of a state of a processor in a ring system is a choice of one of the neighbors of that
processor. Let R be a ring, a self stabilizing protocol for R in which each processor has an orientation
is an orienting protocol, if in each legitimate configuration all orientations form a directed cycle and
if whenever a legitimate configuration is reached the chosen orientation never changes.

3 Impossibility Results for Ring Orientation

In this section we prove that for some uniform and nonuniform rings, no deterministic orienting
protocol exists.

Lemma 1: Let R be a ring of even size in which all processors but one are identical. If each
processor communicates with both its neighbors using a single register then R has no self stabilizing
orienting protocol under ceniral demon.

Proof: Let 2n be the size of the ring. Neighbor ordering is as follows: Py is the first neighbor of
P,, P, is the first neighbor of P;,..., and P,_ is the first neighbor of P,_;. P, is the fizst neighbor
of Pyn_1, Pan—y is the first neighbor of Py,_2,..., and P, is the first neighbor of Pnyy (see Fig 1).
There is no requirement on the neighbor ordering of Py and P,. Let ¢ be an initial configuration
such that:

€1 = €Cn—1, C2 = C2n—2 -y Cn=1 = Cn41

Figure 1: Symmetric neighbor ordering

Thus, we have: ¢ = cowc,w”, and ¢ has a symmetry axis as shown in Fig 1. It is easy to see that a
configuration having such symmetry axis cannot be legal, as edges (P, P;) and (Pyn-1, P2n-1) have
opposite orientations. Note that for all ¢ # 0, the state of P;’s first: (second) neighbor equals the
state of P,,_;’s first (second) neighbor. Thus if we activate P; and then P,,_;, bath will enter the
same state, and the configuration will have the same symmetry axis as ¢. Clearly, activating Py or Py
does not break the symmetry. Thus, if the demon activates processors with the following schedule:

ot

(PD'Pn Pt PZ»-] P'I P2n—2 dor Pn—l Pn-f-l)°°
the system will never reach a legal configuration. O

Lemma 2: Let R be a ring of even size. The ring R has no uniform deterministic oﬁeniing protocol
which is self stabilizing in the presence of distributed demon. '

Proof: Let neighbor ordering be as follows: For all 0 < i < n, P is the first neighbor of Py,
and for all n < i < 2n, P, is the first neighbor of P;_y. Let ¢ be an initial configuration of the form
¢ = ww"; c has a symmetry axis as shown in Fig 2. The protocol is deterministic and all processors
are identical, hence if P; and P,,_;_; are concurrently activated, then a configuration with the same
symmetry will be reached, and therelore the lollowing is a livelock schedule:

({Pﬂv P?n-—l} {PI;PQn_Q} eoe {Pn|Pn+l})°°

4 The Protocol

In this section we present a sell stabilizing protocol for orientation of undirected rings, prove its
correctness and analyze its complexity. The prot.ocol/is composed of two “levels”. Each level consists

Figure 2: Symmetric neighbor ofdering

of a self stabilizing protocol. The lower level directs all edges of the ring, where each edge is directed
by a randomized protocol which is run by the processors on its endpoints. The higher level of the
protocol is a deterministic protocol for orientation of a directed ring. The final protocol is obtained
as a combination of the two by using the technique of fair combination of self stabilizing protocols
_ presented in [DIM-89).

4.1 Directing a Ring

The n edges of a ring are directed by running n separate copies of a randomized edge directing
protocol. The protocol for each edge is executed by its two endpoints. An edge e connecting
processors P and @ is implemented by two registers: P.dir which is written by P and read by Q,
and Q.dir which is written by @ and read by P. This situation is depicted in Figure 3.

@I P.dir | [o.dir I@

Figure 3: Two processors and edge registers between them

The state set of each processor is M = Z3. The set of system configurations consists of all pairs of
numbers from Z3. We say that the edge e is directed from P to Q if P.dir+1 = Q.dir (mod 3). The
set of legitimate configurations contains all pairs of the form: { (P.dir,Q.dir) | P.dir # Q.dir} =
{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)}. Both processors are enabled if the values of the dir fields
are equal. When a processor is activated, it executes the following statement:

if P.dir=Q.dir then P.dir =random(Z;— {P.dir})

Or in words “if your neighbor’s value is the same as yours, then pick something else”. Random(A)
means choose at random (uniformly) an element from set A. In our protocol, we always have |A| =

We now prove that the edge directing protocol is self stabilizing in the presence of a proper
distributed demon. The deadlock and closure requirements are satisfied by the simple observation
that all deadlock configurations are legitimate configurations and that all legitimate configurations
are deadlock configurations. The randomized no-livelock requirement is proved by the following
lemma.

Lemma 3:

(a) For any nonlegitimate configuration ¢, the probability that the system reaches a legitimate
configuration within a single transition is > 1/2.

(b) For any nonlegitimate configuration ¢, the probability that the system does not reach a legiti-
mate configuration within £ transitions is < 27,

Proof: In a nonlegitimate configuration, P.dir = Q.dir, and both processors are enabled. If
the adversary activates a single processor then this processor changes the value of its dir field, and
a legitimate configuration is reached. If both processors are activated concurrently, they change
the value of their dir field, and the system reaches either a legitimate configuration or another
configuration in which P.dir = Q.dir with equal probability. Thus, the probability that the £-th
configuration reached is not legitimate is < 2-¢. O

The expected stabilization time of the protocol is 52, £2=¢ = 2. To direct a ring of n processors
(and n edges) we run n copies of the edge directing protocol, a copy for each edge. Each processor
has two dir fields, a field for each of its neighbors (there is no requirement on the relative values of
these two fields). The total expected number of activations before all edges are directed is O(n).

4.2 The Orienting Protocol

We now introduce a deterministic protocol for orientation of directed rings. The protocol achieves
its goal by using tokens. Tokens are not part of the model but an abstract concept which is helpful
in protocol design and verification. Each token has a direction which is never changed. A token is
passed from its holder to the neighbor of the holder which is in the token’s direction. This neighbor in
its turn passes the token to its other neighbor and so on. Each processor keeps trace of the direction
to which the most recent token was passed. This direction constitutes the current orientation of
the processor. Whenever two tokens meet one of them is eliminated. Stabilization is achieved when
all remaining tokens have the same direction and each processor is visited by at least one of these
remaining tokens.

The state of a processor in this protocol consists of two fields: token and orient. In each state
of processor P the values of of these fields are stored in the registers of P. The token fields are used
to enable token passing, their possible values are I, S or R, which stand for Idle, Sending token and
Receiving token, respectively. The binary orient fields in P’s registers give the current orientation
for P. While the values stored in both token fields of P are always equal, the values stored in the
two orient fields of P are never equal We will usually represent fields token and orient by a single
letter with an arrow over it, s I representing the situation depicted in Figure 4.

token=S
orient=0

token=S token=1 token=1
orient=1 orient=1 orient=0

-
= e

Figure 4: ST

The orienting protocol is defined by the transition table which appears in Figure 5. When a
processor P is activated, it matches its state and the state of its first neighbor @ (which is read
from Q’s régister) against each entry of the table. If a matching entry is found then P executes the
transition associated with that entry. The transition specifies the new state of P which is written
in its two registers, and may depend on the direction of the edge connecting P and Q. If no match
is found, the matching is tried again with @ standing for P’s second neighbor. Choosing to start
the matching from the first neighbor is an arbitrary decision. The only possible multiple match is in
transition 1, preferring the first neighbor over the second may aflect the final orientation but does
not harm the correctness of the protocol or its stabilization time.

transition#l Q. P P
1) E T -ﬁ
LIRS — 1
3)|~S R — §

8)| § 5§ — if e=(P,Q)is directed from P to Q then R

5) 7 T — if e=(P,Q) is directed from P to Q then S

Figure 5: Transition table for the orientation protocol

In transition 1, J means “P is either in state 7 or in state 77. In transition 3, » S means “Q’s
state is anything but 3. The direction of the arrow is to be understood with respect to P. For
example both situations depicted in Figure 6 match transition 2, but the one in Figure 7 does not.
That is, transition 2 matches a situation in which processor P is either in state S or in state :S:, Q
is the neighbor the arrow points to, and Q is in state R with its arrow pointing away from P.

A processor P; in state E or E holds a token whose direction is the arrow direction. If P;_; is
not in state S and P, is in state R (P41 is not in state § and P, is in state R) then P; also holds a
token, whose direction is the arrow direction. Tokens never change their direction.

A token held by P; makes a step whenever P; releases it by executing transition 2. In this case
the token is passed to the neighbor of P; functioning as processor @ for that transition. This could
be either P;_; or Piyy. A tokenis created whenever a processor becomes the holder of a token where
the token was not passed to it by any of its neighbors. The only transition which involves token
creation is transition 5. A token is eliminated whenever a processor releases a token which is not
passed to any of its neighbors. A processor in state R can only enter state S, so an elimination can
take place only if the holder of a token leaves state S (transition 4), or if the holder of a token is in

state R (}_Z) and its left (right) neighbor enters state ¥ (§) (transition 3).

The set of legitimate configurations contains all configurations in which the ring is oriented, that
is all configurations in which all arrows have the same direction:

L= +S+R"+(T+5+R"

Q@
()

©
()

Figure 6: Two situations in which transition 2 is possible

"

Q

_Figure 7: Transition 2 is not possible

We now prove that the orienting protocol is self stabilizing with respect to L and under a distributed
demon.

Lemma 4: The deadlock requirement is satisfied by the protocol.

Proof: Let ¢ be a configuration in which no processor is enabled. If any processor P is in state
R, then either P or one of its neighbors is enabled (transitions 2 and 3). Otherwise, all processors
are either in I or in S. Consider a maximal subvector of processors in state S in ¢. If there is a §§
pair in ¢, then one of these processors in enabled (transition 4). Otherwise the subvector is of the
form (S)'(SY. If 0 < i +j < n, then at one end of the subvector we have a S I (or I S) pair, and
then the processor in state I is enabled (transition 1). Hence, either i + j = 0 or i + J = n, that is,

either all processors are in state S, or they are all in state I. But neither S nor 1T can appear in
c. Therefore, if ¢ is a deadlock configuration, then

e € {(S)"(S)" (D" (D"} S L

Lemma 5: The closure requirement is sﬁtisﬁed by the protocol.

-

Proof: Let ¢ be a legitimate configuration. If ¢ is a deadlock configuration then we are done.
Otherwise, the only possible transitions from c are transitions 1 , 2 and 3, because transitions 4 and
5 require processors to have arrows in different directions. It is easy to see from the protocol that if
transitions 1 , 2 or 3 take place when all arrows have the same direction; then after the transition

~

10

all arrows will still have the same direction. This is true even if many of these transitions take place
concurrently. : 0

We now turn to the randomized no livelock proof. Let E = &,c',... be an execution.
Configuration c® is called the initial configuration of E. A processor P is in its initial state in
configuration ¢’ of E if the state of P in ¢ is equal to its state in all previous configurations of E.
The value of field fof processor P; in configuration ¢ will be denoted either by ¢;.f or by P..f.

Lemma 6: For any configuration ¢ in execution E, if (¢;-token, c;yy.token) = (?, .f), then both P;
and P;;; are in their initial state in E.

Proof: From the protocol, it is easy to see that P; cannot enter state -I. if P;4; is in state T and
vice versa. Neither can P; and Piy, enter states | and I (respectively) concurrently. O

Lemma 7: In any execution of the prototol E; at most n distinct tokens exist. In other words:
The sum of the number of tokens present in the initial configuration of E and the number of tokens
created during E does not exceed n.

Proof: A processor can create a token only if it is in its initial state in E and it is Idle (because
token creation happens only in transition 5). Thus a processor holding a token in the initial config-
uration of E will not create a token during the execution, and a processor can create at most one
token. It follows that in any execution, at most n distinct tokens exist. i O

We now introduce some definitions for the following theorem. For any i > 0 and any configuration
¢, Prefiz(c,i) is the prefix of length i of ¢, i.e. the states of Py,...,Pi.;. 8 ~ e stands for “s
matches the regular expression e”.

Wom (TR 8, T BB}

A; = {ceM" [prefiz(c,i+1) ~ R+5+I)"T+R R}
Bi = {ce M [prefiz(c,i+1) ~ (R+5+ 18}

D = {c€M"[c=R ANea1 #5}

Theorem 8: (Main theorem) Let E = @ ¢, ..+, c* be an execution of the system. If a token ¢
which is present in ¢ makes exactly n — 1 steps, then el

Proof: Without loss of generality assume that ¢ is held by P, in ¢® and that ¢ moves in E in
a clockwise direction (represented by rightward arrows throughout this proof). Configuration s
reached when ¢ makes the (n — 1)-st step. Since we assumed that t is present in c* we can deduce
that ¢ is not eliminated during E. 7

Claim: Let i; be the number of steps ¢ made between ® and &: the holder of ¢ in ¢/ is P;;. For all
i<k :

if i; =0 then d € BoUD

if 1; >0 then ¢ € A;UB;

Proof: By induction on j: %
Base: j =0 ,i; = 0. By our assumption ¢ is held by Po, so either Py.token =S and ¢ € By, or
(Po.token =?Z A P,_,.token #S)and & € D.

Induction Step: Suppose the claim holds for some j > 1, Consider the following three cases:

