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Preface

In June, 1989, the International Conference on Algebraic Topology was held in
Poznan, Poland. The conference was part of the scientific activity in connection with
the 70-th anniversary of the Adam Mickiewicz University in Poznan. It was supported
by the Adam Mickiewicz University, Warsaw University, and Polish government grant
RP.1.10.

There were many of our colleagues and students from both Poznan and Warszawa
who helped to contribute to the success of the conference. We would especially like
to mention Agnieszka Bojanowska, Adam Neugebauer and Bogdan Szydlo, who helped
with the organizational work, and the two conference secretaries Danuta Marciniak and
Katarzyna Kacperska-Panek.

The conference consisted of 10 plenary talks, as well as 49 talks in special sessions
in various fields. These proceedings contain papers presented at the conference, as well
as some other papers (mostly) submitted by conference participants. We tried—and
with some success—to encourage the submission of survey papers.

All papers in the volume have been refereed. We would like to thank the referees
for their work, and Andrzej Weber for proofreading of several manuscripts which had
to be retyped during the editorial process.

Stefan Jackowsk:
Bob Oliver
Krzysztof Pawatowski

Warszawa/Arhus/Poznari,
November 1990
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SOME APPLICATIONS OF SHIFTED SUBGROUPS
IN TRANSFORMATION GROUPS
by C. Allday and V. Puppe

If a torus G of rank r acts on a compact space X, and if all isotropy subgoups have rank
at most 8, then there is a subtorus K C G of rank r —s such that the action of on X is

almost—free. When G is an elementary abelian p—group (i.e., G % (Z/(p))", where p is a prime
number), then there is no immediate analogue of the very useful fact above, since a finite number of
proper subgroups can cover G. In order to overcome this difficulty, and others, shifted subgroups
%to be defined in detail in Section 2 below), which have been used in modular representation theory
or some time (see, e.g., [Benson, 1984}), have been introduced into the cohomological study of finite
transformation groups. The use of shitted subgroups is quite natural; and indeed they seem to have
appeared in transformation groups through the work of at least four different authors: A. Adem
introduced them explicitly in his thesis (fAdem, 1986], and see [Adem, 1988]); they also appear
explicitly in the work of X Assadi ([Assadi, 1988], [Assadi, 1989a), [Assadi, 1989bI and [Assadi]); and
shifted subgroups of rank one appeared implicitly in our paper [Allday, Puppe, 1985).

In this paper we intend to give a survey of some of these applications of shifted subgroups.
We shall concentrate on the work of A. Adem and ourselves and closely related results. Since it
would require a substantial amount of background material, we have not included Assadi's work
concerning applications of the theory of varieties of G—modules in transformation groups: for this
see Assadi's papers cited above. We have included one of Adem's theorems (Theorem (4.14) below),
the proof of which makes substantial use of varieties of G—modules, but, for the same reason, we
have not included Adem's proof. Otherwise, for the most part, we have included proofs, although we
have referred some proofs, especially the proofs of some technical details, to our forthcoming book
([Allday, Puppe]).

In the first two sections we summarize some background material from algebra, including, in
Section 2, the definition and some of the main properties of shifted subgroups. In the third section
we give some of the basic topological notations and definitions which we shall use. We have chosen
to work with paracompact finitistic spaces. There is only a small amount of technical difficulty in
extending the results given here from finite—dimensional G—CW—complexes to paracompact
finitistic G—spaces; and yet many more applications are included amongst the latter, for example,
continuous actions on topological manifolds.

The last three sections give some of the applications of shifted subgroups. In Section 4 we
treat equivariant Tate cohomology (as defined by R. Swan), in Section 5 we give an application in
the manner of P. A. Smith's original method, and in Section 6 we give an application to equivariant
cohomology (as defined by A. Borel).

1. k[G]—modules

Here we collect a few useful facts about k[G]-modules. Throughout this section G will be a
finite group and k will be a field.

(1.1) Theorem. (1) A k[G]-module is projective if and only if it is injective.
2) Any product of projective k[G]—-modules is projective.

Proof. (2) follows at once from (1).

(1) follows from [Brown, 1982], Chap. VI, Corollaries (2.2) and (2.3). (1) also follows since
kl-LGl] is a symmetric algebra, and hence Frobenius: see, for example,
[Fuller, 1989)].

(1.2) Corollary. If M is a projective k[G]-module, then the dual module
M* = Homk[G](M, k[G]) is also projective.

A
(1.3) Definition. We shall say that a kRG]—modu]e M is Tate acyclic if H*(G; M) = 0. (Thisis a
slight s;impliﬁcation of the notion of a cohomologically trivial module: see [Brown, 1982], Chap. VI,
Sec. 8.

(1.4) Theorem. Suppose that G is a finite p—group, where p is any prime number, and that k
is a field of characteristic p. Then the following conditions on a k[G]-module M are equivalent.



1) M is free.
2) M is projective.
3) M is Tate acyclic.
A
(4) H'(G; M) = 0 for at least one i€ L.
Proof. This is contained explicitly in [Brown, 1982], Chap. VI, Theorem (8.5).
(1.5) Corolla.ry Let G and k be as in Theorem (1.4). Then
any direct limit of free k[G]-modules is free; and
if k’ is an extension field of k, if M isa k[G]—module, and if M@k’ isa
k
free k’[G]-module, then M is a free k[G]—module.

Proof. Since G has a complete resolution of finite type, Py, say, for any i€ Z, and k[G]-module
M, Hom, ;~(P:, M) ¥ P¥ ® M. Hence,if {M:|j€ J} is a directed system of k[G]—modules,
k[G]\' i k(q] j

A
%ry H(G; M)).

ne

A
then H*(G; lim M.)
3 J

A A
Similarly for (2), H*(G; M®k’) ~ H*(G; M) @ k.
k k

2. Shifted subgroups

In this section we recall the defnition of shifted subgroups and state some of their basic
properties. Throughout this section G will be an elementary abelian p—group (also known as a

p—torus), where p is a prime number; i.e. G ¥ (Z/(p))" for some r > 0: and k will be a field of
characteristic p. The number r is called the rank of G, denoted rk G.
Suppose that G is generated by g, ..., g For 1<igr, let 7, =1-g € k[G].

Let v, =(1- gi)p—l for 1<i<r. Since r? =0, it follows that the homomorphism from the
polynomial ring k[X,, ..., X ] — k[G] given by X;— 7, for 1<i<r, induces an isomorphism

K[Xy, o XJ/(XF, .., XP) = K([G].

Let m(G; k), or more simply just m, denote the ideal in k[G] generated by
o

—1) r+1 _

7 . So m is the one and only prime ideal in k[G]. Note that m

17

(2.1) Definitions. (1) We shall say that any element u € k[G] is a non—trivial unit if there are

g, ey @ € k, not all zero, such that u=1— Er o modulo m2. Clearly uP = 1; and so u
=1
§enerates a subgroup of order p in the group of units of k[G]. Denote this subgroup by I'(u). As
llows from (3) below, T'(u) is a shifted subgroup of rank 1.

(2) I f ul, -y Ug are non—trivial units in k[G], then let [(u, ..., ug) denote the elementary
abelian p—subgroup of the group of units of k[G] generated by uy, ... ) Ug:

The inclusion of T' = F(ul, wny us) in k[G] induces a homomorphism of group rings
ip: k[I] —k[G].

(3) Suppose that Uy, -, Uy are non—trivial units in k[G]. For 1<j<s, let
U= IEl oy modulo m?. Then I(uy, -y us) is said to be a shifted subgroup of rank s in

k[G] if the vectors o, = (a-l, i ajr) € kr, for 1< j<s, arelinearly independent. It is easy to see
that a shifted subgroup of rank s is indeed an elementary abelian p—group of rank s.



(4) If a nontrivial unit u=1— 5° o;7;, then we also denote I'(u) by I'(a), where
i=1
a=(ay, .., 0)€ K"
5) Given u, v € k[G], we shall write u~v if u—ve m?.
me important properties of shifted subgroups are listed in the following theorem. Proofs
may be found in [Carlson, 1983]; but we shall include the proof of (1), which is most often used
subsequently in this paper.

(2.2) Theorem. (1) If T Ck[G] is a shifted subgroup of rank s, then iy : k[[] — k[G] is
injective, and k[G] is a free k[I']-module (via ip). If s =r, then i is an isomorphism.

(2) If uy, ..., ug are non—trivial units in k(G] such that T' =T(u, ..., ug) has order p’,

then k[G] is a free k[I')—module if and only if 1 —u,...,1— ug are linearly independent modulo

m?: ie. if and only if uy, ..., ug generate I' as a shifted subgroup.

(3) Suppose that u, v € k[G] are non— trivial units such that u - v. Let M be a finitely
Ig(e[znzere)xlte k[G]-module. The M is a free k[I'(u)]—module if and only if M is a free
I'(v)]—module.
(4) Dade's Lemma. If k is algebraically closed, and if M is a finitely generated
k[G]—module, then M is a free k[G]-module if and only if M is a free k[I‘();) —module for all

non—zero a € k'.

Proof. (1) Suppose I' =T'(uy, ..., u) where u; = 1-3° oy modulo m? for 1< j<s. Let 9
i=1

=1 —u€ k [[], and let 03 =3 ;- So o - an. And since T is a shifted subgroup of rank s
i=1

we may assume that ai, w5 aé are linearly independent. Now choose a;_H, - o; so that

{0, ., 0/} is a basis for the k—vector subspace of k[G] spanned by 7, ..., 7. Let u;=1-0]

for s+1<i<r and let T/ = F(us+1, vy ur).
Now ip: k[I] —k[G] and ip,: k[I'"] — k[G] induce, via the direct sum of commutative
k—algebras, a homomorphism ¢ : k[I'] ® k[I''] — k[G]. Since o, ..., o, generate k[G] asa

k—algebra, since ajf - aj € m2 for 1<j<s, and since m(p—l)r+1 = (0), it is clear that ¢ is

surjective. Hence ¢ is an isomorphism, since its domain and codomain are finite—dimensional
k—vector spaces of the same dimension.

For (2) see [Carlson, 1983], Theorem 6.2, and Corollary (1.5)(2) above. (Carlson assumes
that k is algebraically closed.)

For (3) see [Carlson, 1983], Lemma 6.4, and Corollary (1.5)(2) above.

For (4) see [Carlson, 1983], Theorem 4.4, or [Dade, 1978].

(2.3) Remarks. (1) A subgroup I' of the group of units of k[G] is a shifted subgroup of rank s if
and only if there exist Up, ey UG E k[G], such that {1 —up, .. - us} C m, the image of

{1- Uy, ey 1= us} under the quotient map m — m/m2 is linearly independent over k, and

I'= F(ul, — us).

And to put it another way, a subgroup T’ of the group of units of k[G] is a shifted subgroup
if and only if T is generated by a finite number of elements of the coset 1 + m, and the

homomorphism m(T'; k)/m(T; k)2 — m/m2 induced by i is injective.

(2) Let H be asubgroup of G of rank s. Then G ¥ H x G/H; and so thereis a
homomorphism qy ¢ G - H such that quH =1y where jH : H- G is the inclusion. It follows



that H Ck[G] is a shifted subgroup of rank s; and i : k[H] — k[G] induces an injection
m(H; k)/m(H; k)2 — m/m?.

In the following proposition we are concerned with a subgroup H C G and a shifted subgroup
rc k[Gll;( and we want to know when k[G/H] is a free k[I'|—module via the homomorphism
k[I'] — k[G/H] obtained by composing i with the homomorphism k[G] — k[G/H] induced by

the quotient map. Let V be the k—vector space m/ m2, and let Vu be the image of

m(H; k)/m(H; k)2 in V. By Remarks (2.3)(2) above, dimy Vi = rk H. For a shifted subgroup
I Ck[G] let V be the image of m(T'; k)/m(T; k)
ip- By definition of a shifted subgroup dimk VI‘ = rkrI.

in V under the homomorphism induced by

Proposition. In the situation described above, for a subgroup H C G and a shifted subgroup

(2.4)
€ k[G], k[G/H] is a free k[I']-module if and only if VNV =0.

r

Proof. Suppose VNV =0. Let 7:k[G] — k[G/H] be induced by the quotient map, and let

7’ : V— m(G/H; k)/m(G/H; k)2 be induced by . Clearly 7’ is surjective and Vi C ker T
Hence VH = ker 7’. And so 7r’|\/F is injective. Hence 7 maps I' isomorphically onto a shifted
subgrouT 7(I') C k[G/H]. Since k[G/H] is a free k[n(T')]—module by Theorem (2.2)(1), k[G/H] is

a free k[I'l—module.
I il VH #0, then there are two possibilities: (i) = does not map T' isomorphically

onto 7(T), or (ii) = maps I' isomorphically onto #(I'), but (T') is not a shifted subgroup of
k[G/H]. In case (i) the result is clear. In case (ii) the result follows from Theorem (2.2)(2).

The following corollary is very useful in the applications of shifted subgroups to
transformation groups.
(2.5) Corollary. Let Hl’ ey Hn be subgroups of G such that, for 1 <i<n, rk Hi <t<r=rkG.

Then there is an extension field E of k with finite degree over k, and a shifted subgroup
' CE[G] of rank r—t such that E[G/H] is a free Eg[I‘]—module for 1<i<n.

Proof. Let K be the algebraic closure of k. Using the notation of Proposition (2.4) for K[G]
instead of k[G], since K is an infinite field, there is a subspace W CV such that W n Vg =0

1
for 1<i<n, and dimk W =1 —t. Hence there is a shifted subgroup I' C K[G] of rank r—t such
that K[G/H;] is a free K[I']-module for 1<i<n.

But I' is defined in terms of the elements of G using a finite number of coefficients in K.
Let E be the extension field of k generated by these coefficients. So I' may be viewed as a shifted
subgroup in E[G]. Now it follows that E[G/H,] is a free E[I']-module, for 1<i <n, by Corollary

(1.5)(2).

(2.6) Remark. For an important generalization of this result to k[G]—modules which are not
necessarily permutation modules see [Kroll, 1984].

3. Topological notation and constructions

Let G be a finite group and let k be a commutative ring (with identity). Let
A
Py — k — 0 be a projective resolution of k viewed as a trivial k[G]-module; and let P, be a

complete resolution of k (see [Brown,1982], Chap. VI, Section 3). We shall assume, as we may,



A A
that P, and P, have finite type, and that Pi = Pi for i> 0. In particular there is an obvious

A A A
map P, — P, which is the identity on Pi for i > 0 and zero on Pi for i <O0.

(3.1) Definitions. Let C* be a cochain complex of k|G]—modules with cl=0 for i <o. ]
_ . n . n—i
(1) Let ﬂé(C*) = Homk[G](P*,C*). In particular ﬂG(C*) _iZO Homk[G](Pi’C ). The
differential d on F4(C*) is given in terms of the differentials dp and ds on Py and C¥,
respectively, by the formula df(x) = dC(f(x)) (-1)"(d ( )) for fe€ ﬂG(C*)
(2) Let HE(C*) = H(BE(C).d).
A A A A .
(3) Let BX(C*) = Homy [~ (Px,C*), where 5(C*) = " Homy (P:;,C" ). Note that
G k[G] G i—  KIG]Vi

A
we are taking the direct sum here not the direct product. The differential, d, on ﬂé(C*) is defined

in the same way as for ﬂé(C*).

(4) Let HE(C*) = H(BE(CY),d).

(5) The first filtration on S(C*) is defined by FpﬂG(C*) = Homk[G] (P. Cn_])
i=p )

The second filtration on ﬂ*(C*) is defined by Fqﬂ (C*)=o Homk[G] CJ)
i=q ’

A
The first and second filtrations on ﬁG(C*) are defined similarly.

The following spectral sequences are standard. (See [Brown, 1982], Chap. VII, and [Allday,
Puppe], §4.6.)

(3.2) Proposition. The first filtrations gives rise to spectral sequences

1) EP9 = HP(G;HY(C*)) 3 HX(C*); and
2 G

A A
(2) EBY = HP(GHY(C*)) 3 HE(CH).

The second filtration gives rise to a spectral sequence
(3) EP9 = HYG;CP) = HY(CY);

and, if C* is bounded above, i.e. there is an integer n such that c'=0 for i> n, a spectral
sequence

A A
(4) EDT = HYG;CP) s HY(CY).
A A
(3.3) Corollary. The map Py — Py induces a natural homomorphism #*: H%(C*) — Hé(C*).
And, if Hj(C*) =0 forall j>n, then &*: H(j;(C*) — é(C*) is an isomophism for all j > n.

Proof. The existence of #* is immediate. So suppose Hj(C*) =0 forall j>n. Let C’t': be the

cochain complex with Ci =C for i< n, C? = 27", the cocycles of degree n, and C; =0 for



i > n. The inclusion C%‘ — C* is a weak equivalence, and hence the first spectral sequences show
A A
that Hé(C’{) i Ha(C*) and Hé(Ct) o Hé(C*).

$ A . . A
Now BL(CY) = BL(CY) for j>n. Hence HY(CY) HL(CY) for j>n.
In order to work with paracompact finitistic spaces using Alexander—Spanier or Cech
cohomology we need to review some notation and terminology concerning coverings.

(3.4) Definitions. Let X be a paracompact G—space, and let A C X be a closed invariant
subspace. Let % be an open covering of X.
(1) Let , ={Ue %|UnA%# ¢}

v
(2) The Cech nerve of #%, denoted %, is the abstract simplicial complex with vertices the

v
non—empty members of %, and {U,, ..., U_} asimplexof #%, where U.€ % for 0<i<n, if
0 n i

v V)
.ﬂn U. # ¢. The subcomplex %, is defined by saying that a simplex {UO’ - Un} of % isa

1=
v
simplex of %, if N"U,nA#¢.
i=0

(3) The Vietoris nerve of %, denoted %, is the abstract simplicial complex with vertices
the points of X, and {xO, . xn} a simplex of % if {xO, s xn} CU forsome Ue % The

subcomplex %, is defined by saying that a simplex {x, ..., x,} of ¥ isasimplex of %, if
{xg» -+ xp} CA.

v
(4) % is said to be finite—dimensional if % is a finite—dimensional abstract simplicial
\
complex, in which case the l5e0metric realization |#| is a finite—dimensional CW-—complex.
(5) X is said to be finitistic if every open covering of X has a finite—dimensional refinement:
i.e. if finite—dimensional coverings are cofinal.

6) « issaid to be an invariant covering of X ifforany Ue€e % and ge G, gU € %.
7) % is said to be a Cech—G—covering of X if % is invariant and if gUN U # ¢ implies
gU="U forany Ue€ % and g€ G. In this case, for any U€ %, let Gy; ={ge G|gU=U}.

(Cech—G—coverings are just called G—coverings in [Bredon, 1972]).
(8) % is said to be faithful if % is a Cech—G—covering, and if, for any U € %, thereis a
x € X such that GU C Gx'

(3.5) Lemma. If X is a paracompact G—space, then locally finite faithful Cech—G—coverings are
cofinal. If X is also finitistic, then locally finite finite—dimensional faithful Cech—G—coverings are
cofinal.

Proof. Most of this is contained in [Bredon, 1972], Chap. III, Theorem 6.1. Since G is finite, X
has a covering by open slices, which is a faithful Cech—G—covering. And clearly any
Cech—G—covering which refines a faithful Cech—G—covering is also faithful.

(3.6) Definitions. Let X be a paracompact G—space, let A C X be a closed invariant subspace,
and let A be a k—module.
(1) Let TH*X, A; A) = léi’[m C*(%, %,; A), where % ranges over the faithful

Cech—G—coverings of X, and C*(%, TlA; A) is the ordered cochain complex of the pair (%, A)



with coefficients in A. Then CT*(X, A; A) is the Alexander—Spanier cochain complex of (X, A)
with coefficients in A as defined, for example, in [Spanier, 1966], Chap. 6, sec. 4. Clearly

C*(X, A; A) is a cochain complex of k[G]—modules. If G is an elementary abelian p—group, k is
a field of characteristic p, and if T Ck[G] is a shifted subgroup, then C*(X, A; A) is also a
cochain complex of k[I']—modules.

A A
(2) Let HA(X, A; A) = HE(TH(X, A; A)), and let HE(X, A; A) = HA(T*(X, A; A)).

A
Define Hf.(X, A; A) and HI":(X, A; A) similarly if G is an elementary abelian p—group, k

is a field of characteristic p, and T C k[G] is a shifted subgroup.
3) If X isa G—CW—complex, and A is G—CW—subcomplex, or more generally, if
(X, A) is arelative G—CW—complex, then let W,(X, A; k), respectively W*(X, A; A), be the

cellular chain complex of (X, A) with coefficients in k, respectively the cellular cochain complex of
(X, A) with coefficients in A.
The following lemma is proven in detail in [Allday, Puppe].
(3.7) Lemma. If X is a paracompact G—space and A C X is a closed invariant subspace, then
A A v v

) A x x V v
21im HG(W (121, %, |5 A),
A
and similarly with H(“‘; instead of H(*}.
If G is an elementary abelian p—group, k is a field of characteristic p, and if ' C k[G] is

a shifted subgroup, then the corresponding results also hold for Hi‘: and I:\If\

Furthermore Hé(X, A;A) Y H*(XG, AG; ), the Alexander—Spanier cohomology of the pair
(XG, AG) with coefficients in A, where XG’ for example, is the Borel construction on X; i.e.
XG = (EG x X)/G.

A
(3.8) Remarks. (1) HE(X, A; A), respectively H(X, A; A), is called the equivariant,
respectively the equivariant Tate, cohomology of (X, A) with coefficients in A.

A

(2) Hé, like Ha, has natural long exact sequences for pairs, Mayer—Vietoris sequences, and
tautness properties. For example, if A and B are closed invariant subspaces of X with
X = A UB, then there is a long exact Mayer—Vietoris sequence

A . A . A . A . A .

+1
~— HE(X; A) — HY(A; A) @ H)(B; A) — HL(ANB; A) = HLTH(X; A) — ... and
A x A
HG(A; A)2lim Hé(V; A), where V ranges over the closed invariant neighborhoods of A. The
\Y
A

same holds for Hl’ﬁ and HI*: (See [Allday, Puppe], § 4.6.)

We finish this section by recalling W.—Y. Hsiang's definition of the p—rank of a space.

(3.9) Definitions. Let G = (Z/(p))", and let ®: G x X — X be an action of G on a space X.
(1) Therank of @ is rk®: = r—max{rk G| x € X}. Thusif rk® = p, then p is the
order of the smallest orbit. rk® =r if and only if G is acting freely; and rk® = 0 if and only if
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XG # ¢. Thus rk® measures in a certain sense the extent to which the action is free.
(2) The p-rank of X is rk p(X) : = sup rk®, where ® ranges over all elementary abelian

p—group actions on X.

(3.10) Remark. We could also define the free p—rank of X to be frkp(X): =sup {r|(Z/(p))" can
act freely on X}. There are well known examples where rkp(X) > frk p(X). For example,

tky(CP) = 1 but frky(CP2) = 0: see Examples (5.5)(2) below.

4. Equivariant Tate cohomology.

Equivariant Tate cohomology and finitistic spaces were introduced by Swan in [Swan, 1960].
We shall recall Swan's main theorem immediately following the next definition.

(4.1) Definition. Let G be a compact Lie group and let X be a paracompact G—space. Then the
singular set of X is defined to be X, : = {gx € X|G, # {1}}. X, isclearly invariant, and by the
Slice Theorem it is closed.
(4.2) Theorem. Let G be a finite group, k a commutative ring with identity, A a k—module, X
a paracompact finitistic G—space and A C X is a closed invariant subspace. Then restriction
induces an isomorphism
A A
HE(X, AjA) — Hé(xl, A A).

For a proof see [Swan, 1960] or [Allday, Puppe], §4.6.

In applying Swan's Theorem the following easy lemma to be found in [Adem, 1988] and
inspired by [Heller, 1959] is useful.
(4.3) Lemma. Let G be a finite group and let k be a field of characteristic p where
p divides |G|. Let C* be a cochain complex of k[G]-modules such that C' =0 forall i <0
and H(C*) =0 forall j> N, where N is some integer. Then, for any integer m,

A A A g .
dim, H™(G; BO(C*)) < dim B Y (C*) + 3N dim HP(G; HI(C)).
=1
(4.4) Corollary ([Heller, 1959], [Adem, 1988]). Let X be a paracompact finitistic space such that
H*(X; Fp) v H*(S%xS"; Fp) as graded F p—vector spaces where a and b are integers such that 0
< a<b. Then frkp(X) < 2. (See Remark (3.10))
A

Proof. Suppose that G = (l/(p))3 is acting freely on X. By Swan's Theorem, H(’E(X; le) =0.
Now Lemma (4.3) with m=a + b and C* = T*(X; pr) yields a contradiction.

Now we would like to prove that, under the conditions of the Corollary (4.4), rkp(X) <2. In

[Adem, 1988], Adem did this by introducing shifted subgroups. Here then, following the next
definition, is a shifted version of Swan's Theorem.

(4.5) Definition. Let G ¥ (I/(p))" and let k be a field of characteristic p. Let X bea
paracompact G—space. Then, using the notation introduced immediately above Proposition (2.4), for
any shifted subgroup T C k[G], let X(T;k) = {x € XlVF nVg ¢ 0}. Note that X(T; k) is

X

invariant, and, by the Slice Theorem, it is closed. Also X(G; k) = {x € X | Vg # 0} = X;.
X



4.6) Theorem. Let G v § p))", let k be field of characteristic p, let X be a paracompact
initistic G—space, let A C X be a closed invariant subspace, and let T' C k[G] be a shifted
subgroup. Then restriction mduces an 1somorphlsm

H;(x, A; k) =5 H;(X(r; k), A(T; k); k).

Proof. Thanks to the long exact sequences (see Remarks (3.8)( L ) it is enou§(h to prove the result
when A = ¢. Suppose the result has been proven in case X(I' ¢. If X(T;Kk) # ¢, let W be

a closed invariant neighbourhood of X(T'; k) and let W, be the complement of the interior of W
So W2(I‘; k) = ¢ and (W1 n W2)(F; k) = ¢. By the Mayer—Victoris sequence, therefore,

A A
H’I‘:(X- k)~ HF(W ; k). The result now follows by the tautness property (Remarks (3.8(2))).
So it remains to show that H (X k) =0 if X(I'; k) = ¢. Let % be a faithful

finite—dimensional Cech—G—covering of X. For any y € |7t|, there is a x € X such that

v
G C G, (Since % is a Cech—G—covering, the maximal isotropy groups of |#%| occur at the
vertices; and these are all contained in isotropy groups of X since % is faithful.) Now, by

v v
Proposition (2.4), each k[G/Gy], for y € |#%|, is afree k[I]-module. Thuseach W,(|#%]; k),

. v
and hence, by Theorem (1.1)(2), also each W'(|#|; k), is a free k[[]-module.
A v
By the second spectral sequence (Proposition (3.2)(4)), HI’t(W*( | #]; k)) =0. So

A
H{(X; k) = 0 by Lemmas (3.5) and (3.7).

(4.7) Corollary. Let G = (Z/(p))", let X be a paracompact finitistic G-space, and let A CX be
a closed invariant subspace. Let p be the rank of the actionon X — A : i.e.
p=r-max {rk G |x€X —A}. Then there is a finite field k of characteristic p and a shifted

subgroup T C k[G] of rank p such that

A

HE(X, A; k) = 0.
Proof. Let Hl’ sy Hn be the isotropy groups of G on X — A. By Corollary (2.5) and its proof,
there is a field k, which is of finite degree over F_, and a shifted subgroup T C k[G] of rank p,
such that Vpn VH =0 for 1<i<n. So X(T; k)= A(T; k); and the result follows.

Combimn% Corollary (4.7) with Lemma (4.3) as in the proof of Corollarfr (4.4) we get
immediately the first part of the following corollary. The second part of the following requires a little
more work with the first spectral sequence.

(4.8) Corollary. Let X be a paracompact finistic G—space such that H*(X; pr) v H*(S? Sb; IFp)
as graded Fp—vector spaces where a and b are integers such that 0 < a < b. Then
(1) rhy(X) €2, 1f X =5« s, then rky(X)=2. If X =5%x S and a,b and p are

odd, then rk_(S? x SP) = 2.
(2) If a+b and p areodd, then rk (X)<1. (If a and b areeven, and p is odd, then
rkp(X) = 0. This follows from Theorem (5.1) below.)



