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Preface

This book presents an introduction to the classical theories of continuum me-
chanics; in particular, to the theories of ideal, compressible, and viscous fluids,
and to the linear and nonlinear theories of elasticity. These theories are impor-
tant, not only because they are applicable to a majority of the problems in contin-
uum mechanics arising in practice, but because they form a solid base upon
which one can readily construct more complex theories of material behavior.
Further, although attention is limited to the classical theories, the treatment is
modern with a major emphasis on foundations and structure.

I have used direct—as opposed to component—notation throughout. While
engineers and physicists might at first find this a bit difficult, I believe that the
additional effort required is more than compensated for by the resulting gain in
clarity and insight. For those not familiar with direct notation, and to make the
book reasonably self-contained, I have included two lengthy chapters on tensor
algebra and analysis.

The book is designed to form a one- or two-semester course in continuum
mechanics at the first-year graduate level and is based on courses I have taught
over the past fifteen years to mathematicians, engineers, and physicists at Brown
University and at Carnegie-Mellon University.

With the exception of a list of general references at the end of each chapter, I
have omitted almost all reference to the literature. Those interested in questions
of priority or history are referred to the encyclopedia articles of Truesdell and
Toupin [ 1], Truesdell and Noll [1], Serrin, [1], and Gurtin [1].
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CHAPTER

I
Tensor Algebra

1. POINTS. YECTORS. TENSORS

The space under consideration will always be a three-dimensional
euclidean point space &. The term point will be reserved for elements of &, the
term vector for elements of the associated vector space ¥ . The difference

v=y—X
of two points 1s a vector (Fig. 1); the sum
y=X+V¥

of a point x and a vector v is a point. The sum of two points is not a meaningful
concept.

Figure 1 \

The inner product of two vectors uand v will be designated by u - v, and we
define

) )

lul = (u-u)' -, u’ = u-u
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I. TENSOR ALGEBRA

We use the symbol R for the reals, R™ for the strictly positive reals.

Representation Theorem for Linear Forms.! Let y: ¥ — R be linear. Then
there exists a unique vector a such that

Y(v) =a-v
Jfor every vector v.

A cartesian coordinate frame consists of an orthonormal basis (e} =
{e,, e,, ey} together with g point o called the origin. We assume once and for
all that a single, fixed cartesian coordinate frame is given. The (cartesian)
components of a vector u are given by

=u-e;,
so that
usv = ur.
e
1
Similarly, the coordinates of a point x are
X; = (X —0)-e.

The spanspiu,v,. .. ,wjofaset{u,v,...,w}ofvectorsisthe subspace of
¥ consisting of all linear combinations of these vectors:

spiw, v, ... W = {au 4+ fiv + - 4wl L e R}

(We will also use this notation for vector spaces other than 7 )
Given a vector v, we write

(vi* = {uju-v =0}

for the subspace of ¥ consisting of all vectors perpendicular to v.
We use the term tensor as a synonym for “linear transformation from ¥~
into ¥ . Thus a tensor S is a linear map that assigns to each vector u a vector

v = Su.

The set of all tensors forms a vector space if addition and scalar multiplication
are defined pointwise; that is, S + T and «S (x € R) are the tensors defined by

(S 4+ T)y = Sv + Ty,
(xS)v = %(Sv).

The zero element 1n this space is the zero tensor ) which maps every vector v
into the zero vector:

Ov = 0.

"Cf.Le.g.. Halmos [1. §67]
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Another important tensor is the identity I defined by
Iv=v

for every vector v.
The product ST of two tensors is the tensor

ST=S-T;
that is,
(ST)v = S(Tv)
for all v. We use the standard notation
S? =SS, etc.

Generally, ST # TS. If ST = TS, we say that S and T commute.
We write ST for the transpose of S; S” is the unique tensor with the
property

Su-v=u-STy
for all vectors u and v. It then follows that

S+TT=ST+TT7,

(ST)" =T'ST, (1)
BT =8
A tensor S is symmetric if
S =8,
skew if
S=-S"

Every tensor S can be expressed uniquely as the sum of a symmetric tensor E
and a skew tensor W:

=E + W;
n fact,
E =4S+ 8",
W =S -S".

We call E the symmetric part of S, W the skew part of S.



4 I. TENSOR ALGEBRA
The tensor product a ® b of two vectors a and b is the tensor that assigns
to each vector v the vector (b-v)a:
(a® b)y = (b-v)a.
Then
(a®b)’ = (b®a),
(@a®b)(c®d) =(b-cla®d,
: 07 l # j -
(e; ®e)(e; ®e)) = {ei ® e, fr=§ (2)

Ye®e =1

L_et e be a unit vector. Then e ® e applied to a vector v gives
(v-e)e,

which is the projection of v in the direction of e, while I — e ® e applied to v
gives

v — (v-e)e,

which is the projection of v onto the plane perpendicular to e (Fig. 2).

(e®e)vf /

(3

(1 —e®e)y
Figure 2

The components §;; of a tensor S are defined by

S;; = e;* Se;.
With this definition v = Su is equivalent to
v = DS u;.
Further,
S = Zsije.‘®ej (3)
and

(a ® b)‘J = “ibj-
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We write [S] for the matrix
S Sz Sis
[S] =Sy Sz: 523 ’
SJI S.‘Z SSS

It then follows that
[S"] =[S]",
[ST] = [S][T],

and
1 00
[I1=]0 1 0}
0 0 1
The trace is the linear operation that assigns to each tensor S a scalar tr S

and satisfies

trlu®v) =u-v
for all vectors u and v. By (3) and the linearity of tr,

trS = tr(Z S,e® ej) =Y §;tr(e; ®e))
i iy
=Y See; =Y Si.
i i
Thus the trace is well defined:
trS =73 S..
This operation has the following properties:
tr ST =1tr S, .
(4)
tr(ST) = tr(TS).
The space of all tensors has a natural inner product

ST =tr(S'T),

which in components has the form

S T=YS,T,
i, J
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Then
[-S=1trS,
R-(ST) = (S'R)- T = (RT")-S,
u'Sv=S-(u®v),
@®b) w®v)=(a-u)(b-v).

More important is the following

(5)

Proposition
(a) IfSis symmetric,
S T=S'T'=S-{T+ThH.
(b) If W is skew,
W-T=-W-TM=W-{{T - TH).
(c) 1If'Sis symmetric ¢ :d W skew,
S-W=0.

(d) IfT+S = 0for every tensor S, then T = 0.
(e) IfT-S = 0for every symmetric S, then T is skew.
(f)y If T-W = 0 for every skew W, then T is symmetric.

We define the determinant of a tensor S to be the determinant of the matrix
[S]:
det S = det[S].

This definition is independent of our choiee of basis {e;}.
A tensor S is invertible if there exists a tensor S !, called the inverse of S,
such that

SS'=S"'S=1

It follows that S is invertible if and only if det S # 0.
The identities

det(ST) = (det S)(det T),
det ST = det S,
det(S™ ') = (det S) ', (6)
STy '=T 'S ',
(S Hl=(@$H!

i
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will be useful. For convenience, we use the abbreviation
S T=(s HT
A tensor Q is orthogonal if it preserves inner products:
Qu-Qv=u-v

for all vectors u and v. A necessary and sufficient condition that Q be ortho-
gonal is that

QQ'=Q'Q =1
or equivalently,
QT - Q* l‘

An orthogonal tensor with positive determinant is called a rotation. (Rota-
tions are sometimes called proper orthogonal tensors.) Every orthogonal
tensor is either a rotation or the product of a rotation with —L IfR # Tisa
rotation, then the set of all vectors v such that

Rv =v

forms a one-dimensional subspace of ¥~ called the axis of R.
A tensor S is positive definite provided

v-Sv >0

for all vectors v # 0.
Throughout this book we will use the following notation:

Lin = the set of all tensors;
Lin' = the set of all tensors S with det S > 0;
Sym = the set of all symmetric tensors;
Skw = the set of all skew tensors:
Psym = the set of all symmetric, positive definite tensors;
Orth = the set of all orthogonal tensors:
Orth™ = the set of all rotations.

The sets Lin ", Orth, and Orth " are groups under multiplication in fact,
Orth ™ 1s a subgroup of both Orth and Lin™". Orth 1s the orthogonal group:
Orth " is the rotation group (proper orthogonal group).

On any three-dimensional vector space there are exactly two cross
products, and one is the negative of the other. We assume that one such cross
product, written



8 I. TENSOR ALGEBRA
for all wand v, has been singled out. Intuitively, u x v will represent the right-
handed cross product of w and v thus if

e, =€, X e,,

then the basis {e,} is right handed and the components of u x v relative to
{e;} are

U Uy — Uy, Uy — U b3, U Uy — Uy Uy
Further.
uxv= —vXxu,
uxu=_0,
U (vxw =w-(uxv)=v-(wxu.
When u, v, and w are lincarly independent, the magnitude of the scalar
u-(v x w)
represents the volume of the parallelepiped .2 determined by u, v, w. Further,'

det S = Su - (Sv x Sw)
u-(v x w)

and hence

VOI(S(,' 7))

n ‘I -~ -
|det 8] = = i)

which gives a geometrical interpretation of the determinant (Fig. 3). Here
S(.7) is the image of .2 under S, and vol designates the volume.
There is a one-to-one correspondence between vectors and skew tensors:
given any skew tensor W there exists a unique vector w such that
Wy =wxy (7)

for every v, and conversely: indeed,

0 —y f
(Wl=] 7 0 -«
—f 2 0
corresponds to
w, = 2, w, = f§, wy =193,

" Cf..e.g.. Nickerson. Spencer. and Steenrod [1., 85.2].
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Figure 3

We call w the axial vector corresponding to W. It follows from (7) that (for
W # 0) the null space of W, that is the set of all v such that

Wy = (),

1s equal to the one-dimensional subspace spanned by w. This subspace is called
axis of W.

We will frequently use the facts that ¥ "and Lin are normed vector spaces
and that the standard operations of tensor analysis are continuous. In
particular, on ¥ and Lin, the sum, inner product, and scalar product are
continuous. as are the tensor product on ¥ and the product, trace, transposc.
and determinant on suitable subsets of Lin.

EXERCISES

1. Chooscae v andlety: # — R be defined by y(v) = a-v. Show that
a =), lee. ‘

)

Prove the representation theorem for linear forms (page 1).

3. Show that the sum S + T and product ST are tensors.

4. Establish the existence and uniqueness of the transpose ST of S.
5. Show that the tensor product a ® b is a tensor.

6. Prove that

(a) S(a®b)=(Sa)®b.
(b) (a®b)S=a®(S'b).
(€) Y.(Se)®e =S

7. Establish (1), (2), (4)., and (5).



