Marc Ebner Michael O’Neill
Aniko Ekdart Leonardo Vanneschi
Anna Isabel Esparcia-Alcazar (Eds.)

Genetic
Programming

10th European Conference, EuroGP 2007
Valencia, Spain, April 2007
Proceedings

LNCS 4445

@ Springer

-7
TP3” =35

& /' Marc Ebner Michael O’Neill
. -7 Aniké Ekéart Leonardo Vanneschi
" ' Anna Isabel Esparcia-Alcédzar (Eds.)

Genetic
Programming

10th European Conference, EuroGP 2007
Valencia, Spain, April 11-13, 2007
Proceedings

& springer LMK

E2007003200

Volume Editors

Marc Ebner
Universitdt Wiirzburg, Germany
E-mail: ebner @informatik.uni-wuerzburg.de

Michael O’Neill
University College Dublin, Ireland
E-mail: m.oneill@ucd.ie

Aniké Ekart
Aston University, Birmingham, UK
E-mail: ekarta@aston.ac.uk

Leonardo Vanneschi
University of Milano—Bicocca, Italy
E-mail: vanneschi @disco.unimib.it

Anna Isabel Esparcia-Alcdzar
Universidad Politécnica de Valencia, Spain
E-mail: anna@iti.upv.es

Cover illustration: Morphogenesis series #12 by Jon McCormack, 2006

Library of Congress Control Number: 2007923720

CR Subject Classification (1998): D.1,F.1,F2,1.5,1.2,J.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71602-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71602-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12041664 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4445

Preface

In 2007 the European Conference on Genetic Programming (EuroGP) reached
in its tenth year. What started out as a small workshop in 1998 in Paris has
grown considerably in size over the years both in number of attendees as well
as number of submissions. EuroGP is the only conference worldwide devoted
exclusively to genetic programming and all aspects of evolutionary generation of
computer programs. For the tenth year we came together to exchange our ideas
on the automatic generation of programs inspired by Darwinian evolution. The
main operators are reproduction, variation and selection. In nature, heritable
traits are passed from one generation to the next. Variations are introduced
through accidental mutations or by recombining genetic material from parents.
Selection occurs as a result of limited resources. The very same process is used
when trying to evolve programs using artificial evolution. The desired task for
the programs to perform is specified via the fitness function.

This year we received a record number of 71 submissions. A rigorous, double-
blind, selection mechanism was applied to the submitted papers. We accepted
21 plenary talks (30% acceptance rate) and 14 poster presentations (49% global
acceptance rate for talks and posters). Each submissions was reviewed by at
least three members of the international Program Committee from 19 different
countries. Each reviewer was asked for keywords specifying their own area of ex-
pertise. Submissions were then appropriately matched to the reviewers based on
their expertise using the optimal assignment of the conference management soft-
ware (MyReview) originally developed by Philippe Rigaux, Bertrand Chardon
and colleagues from the Université Paris-Sud Orsay, France. This version of the
MyReview system has been developed with funding from the European Coor-
dinated Action ONCE-CS (Open Network Connecting Excellence in Complex
Systems), funded under FP6 framework by the FET division (contract 15539).
Only small adjustments were then made manually to balance the work load
better.

Papers were accepted for presentation at the conference based on the re-
viewers’ recommendations and also taking into account originality, significance
of results, clarity of representation, replicability, writing style, bibliography and
relevance to the conference. As a result, 35 high-quality papers are included
in these proceedings which address fundamental and theoretical issues such
as crossover bias, issues such as chess game playing, real-time evaluation of
VoIP, multi-objective optimization, evolution of recursive sorting algorithms,
density estimation for inverse problem solving, image filter evolution, predicting
prime numbers, data mining, grammatical genetic programming, layered learn-
ing, expression simplification, neutrality and evolvability, iterated function sys-
tems, particle swarm optimization, or open-ended evolution. The use of genetic

VI Preface

programming for several different applications shows that the method is a very
general problem-solving paradigm.

The 10th European Conference on Genetic Programming took place during
April 2007 11-13 in Valencia, Spain. The present volume contains all contribu-
tions that were accepted for publication either as talks or posters. All previous
proceedings have been published by Springer in the Lecture Notes in Computer
Science series. EuroGP was co-located with EvoCOP 2007, the seventh Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization,
and also EvoBIO, fifth European Conference on Evolutionary Computation, Ma-
chine Learning and Data Mining in Bioinformatics, and the series of EvoWork-
shops, focusing on applications of evolutionary computation. Evo* (pronounced
EvoStar) is the new umbrella name for the three co-located conferences and the
EvoWorkshops series, the increasingly important international event exclusively
dedicated to all aspects of evolutionary computing.

Many people helped to make the conference a success. We would like to
express our gratitude to the members of the Program Committee for their thor-
ough reviews of all papers submitted to the conference. Their constructive com-
ments made it possible for the authors to improve their original submissions
for final publication. We also thank the following institutions. The Universidad
Politécnica de Valéncia provided institutional and financial support, as well as
the lending of their premises and also helped with the organization and admin-
istration. The Instituto Tecnolégico de Informéatica cooperated with regard to
the local organization. The Spanish Ministerio de Educacién y Ciencia also pro-
vided financial support for which we are very grateful. We are thankful to Marc
Schoenauer, INRIA, France, for managing the MyReview conference manage-
ment software.

We especially thank Jennifer Willies and the School of Computing, Napier
University. Without her dedicated work and continued involvement with the
EuroGP conference from the initial start in 1998 to what now has become Evo*,
this event would not be what it is today.

April 2007 Marc Ebner
Michael O’Neill

Aniké Ekart

Leonardo Vanneschi

Anna Isabel Esparcia-Alcézar

Organization

Administrative details were handled by Jennifer Willies, Napier University, School
of Computing, Scotland, UK.

Organizing Committee

Program Co-chairs Marc Ebner (Universitit Wiirzburg, Germany)
Michael O’Neill (University College Dublin, Ireland)
Publication Chair Aniké Ekért (Aston University, UK)

Local Chair Anna Isabel Esparcia-Alcazar (Universidad Politécnica de
Valencia, Spain)
Publicity Chair Leonardo Vanneschi (University of Milano-Bicocca, Italy)

Program Committee

Abbass, Hussein. UNSW@ADFA, Australia

Altenberg, Lee. University of Hawaii at Manoa, USA

Aydin, Mehmet Emin. University of Bedfordshire, UK

Azad, R. Muhammad Atif. University of Limerick, Ireland
Banzhaf, Wolfgang. Memorial University of Newfoundland, Canada
Bentley, Peter. University College London, UK

Brabazon, Anthony. University College Dublin, Ireland

Bredeche, Nicolas. Université Paris-Sud, France

Burke, Edmund Kieran. University of Nottingham, UK

Cagnoni, Stefano. University of Parma, Italy

Cheang, Sin Man. Hong Kong Institute of Vocational Education, China
Collard, Philippe. I3S laboratory-UNSA, France

Collet, Pierre. Université du Littoral, Céte d’Opale, France

Costa, Ernesto. University of Coimbra, Portugal

de Jong, Edwin. Utrecht University, The Netherlands

Defoin Platel, Michael. Laboratoire d’Océanographie de Villefranche, France
Dempsey, Ian. University College Dublin, Ireland

Divina, Federico. Tilburg University, The Netherlands

Ebner, Marc. Universitdt Wiirzburg, Germany

Ekart, Aniké. Aston University, UK

Essam, Daryl. University of New South Wales, Australia
Ferndndez de Vega, Francisco. University of Extremadura, Spain
Folino, Gianluigi. ICAR-CNR, Italy

Fonlupt, Cyril. LIL - Université du Littoral, Céte d’Opale, France
Gagné, Christian. Informatique WGZ Inc., Canada

Giacobini, Mario. University of Turin, Italy

VIII Organization

Gustafson, Steven. GE Global Research, USA

Hao, Jin-Kao. University of Angers, France

Harvey, Inman. University of Sussex, UK

Hoai, Nguyen Xuan. The Vietnamese Military Technical Academy, Vietnam
Hornby, Greg. University of California, Santa Cruz, USA
Howard, Daniel. QinetiQ, UK

Johnson, Colin. University of Kent, UK

Kalganova, Tatiana. Brunel University, UK

Keijzer, Maarten. Chordiant Software, The Netherlands

Keller, Robert E. University of Essex, UK

Kendall, Graham. University of Nottingham, UK

Khan, Asifullah. Pakistan Inst. of Engineering and Applied Sciences, Pakistan
Kim, Daeeun. University of Leicester, UK

Kubalik, Jiri. Czech Technical University, Czech Republic
Levine, John. University of Strathclyde, UK

Lopes, Heitor Silverio. Federal Technological University of Parana, Brazil
Lucas, Simon. University of Essex, UK

Machado, Penousal. University of Coimbra, Portugal

Martin, Peter. Naiad Consulting Limited, UK

McKay, Bob. Seoul National University, Korea

Mehnen, Jorn. University of Dortmund, Germany

Miller, Julian. University of York, UK

Nicolau, Miguel. INRIA, France

Nievola, Julio Cesar. PUCPR, Brazil

O’Neill, Michael. University College Dublin, Ireland

O’Reilly, Una-May. Massachusetts Institute of Technology, USA
Pizzuti, Clara. ICAR-CNR, Italy

Poli, Riccardo. University of Essex, UK

Ray, Thomas. University of Oklahoma, USA

Robilliard, Denis. Université du Littoral, Cote d’Opale, France
Schoenauer, Marc. INRIA, France

Sekanina, Lukds. Brno University of Technology, Czech Republic
Sipper, Moshe. Ben-Gurion University, Israel

Skourikhine, Alexei. Los Alamos National Laboratory, USA
Soule, Terence. University of Idaho, USA

Tettamanzi, Andrea. University of Milan, Italy

Thompson, Adrian. University of Sussex, UK

Tomassini, Marco. University of Lausanne, Switzerland

van Hemert, Jano. University of Edinburgh, UK

Vanneschi, Leonardo. University of Milano-Bicocca, Italy

Verel, Sébastien. University of Nice-Sophia Antipolis, France
Yu, Tina. Memorial University of Newfoundland, Canada

Lecture Notes in Computer Science

For information about Vols. 1-4334

please contact your bookseller or Springer

Vol. 4446: C. Cotta, J. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization. XII, 241
pages. 2007.

Vol. 4445: M. Ebner, M. O’Neill, A. Ekart, L. Vanneschi,
Al Esparcia-Alcézar (Eds.), Genetic Programming. XI,
382 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4430: C.C. Yang, D. Zeng, M. Chau, K. Chang, Q.
Yang, X. Cheng, J. Wang, F.-Y. Wang, H. Chen (Eds.),
Intelligence and Security Informatics. XII, 330 pages.
2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007. (Sublibrary LNAI).

Vol. 4427: S. Uhlig, K. Papagiannaki, O. Bonaventure
(Eds.), Passive and Active Network Measurement. XI,
274 pages. 2007.

Vol. 4425: G. Amati, C. Carpineto, G. Romano (Eds.),
Advances in Information Retrieval. XIX, 759 pages.
2007.

Vol. 4424: O. Grumberg, M. Huth (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems.
XX, 738 pages. 2007.

Vol. 4423: H. Seidl (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVI, 379 pages.
2007.

Vol. 4422: M.B. Dwyer, A. Lopes (Eds.), Fundamental
Approaches to Software Engineering. XV, 440 pages.
2007.

Vol. 4421: R. De Nicola (Ed.), Programming Languages
and Systems. XVII, 538 pages. 2007.

Vol. 4420: S. Krishnamurthi, M. Odersky (Eds.), Com-
piler Construction. XIV, 233 pages. 2007.

Vol. 4419: P.C. Diniz, E. Marques, K. Bertels, M.M.
Fernandes, J.M.P. Cardoso (Eds.), Reconfigurable Com-
puting: Architectures, Tools and Applications. XIV, 391
pages. 2007.

Vol. 4418: A.-Gagalowicz, W. Philips (Eds.), Computer
Vision/Computer Graphics Collaboration Techniques.
XV, 620 pages. 2007.

Vol. 4416: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.),
Hybrid Systems: Computation and Control. XVII, 797
pages. 2007.

Vol. 4415: P. Lukowicz, L. Thiele, G. Troster (Eds.), Ar-
chitecture of Computing Systems - ARCS 2007. X, 297
pages. 2007.

Vol. 4414: S. Hochreiter, R. Wagner (Eds.), Bioinformat-
ics Research and Development. X VI, 482 pages. 2007.
(Sublibrary LNBI).

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007. (Sublibrary
LNAI).

Vol. 4407: G. Puebla (Ed.), Logic-Based Program Syn-
thesis and Transformation. VIII, 237 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T.
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4400: J.F. Peters, A. Skowron, V.W. Marek, E.
Orlowska, R. Slowinski, W. Ziarko (Eds.), Transactions
on Rough Sets VII, Part II. X, 381 pages. 2007.

Vol. 4399: X. Llora, T. Kovacs, K. Takadama, P.L.. Lanzi,
S.W. Wilson, W. Stolzmann (Eds.), Learning Classifier
Systems. XII, 345 pages. 2007. (Sublibrary LNAI).

Vol. 4398: S. Marchand-Maillet, E. Bruno, A. Niirn-
berger, M. Detyniecki (Eds.), Adaptive Multimedia Re-
trieval: User, Context, and Feedback. XI, 269 pages.
2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal

Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.),
Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4395: M. Daydé, JM.LM. Palma, AL.G.A.
Coutinho, E. Pacitti, J.C. Lopes (Eds.), High Perfor-
mance Computing for Computational Science - VEC-
PAR 2006. XXIV, 721 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVI, 648 pages. 2007.

Vol. 4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIII, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
X1, 595 pages. 2007.

Vol. 4391: Y. Stylianou, M. Faundez-Zanuy, A. Esposito
(Eds.), Progress in Nonlinear Speech Processing. XII,
269 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems III. X, 273
pages. 2007. (Sublibrary LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIIL. XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol. 4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. XI, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4374: J.F. Peters, A. Skowron, I. Diintsch, J.
Grzymata-Busse, E. Ortowska, L. Polkowski (Eds.),
Transactions on Rough Sets VI, Part I. XII, 499 pages.
2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. X1V, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: PP Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrom, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. X1, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Plasil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. Pdun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyéan, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. XVIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4345: N. Maglaveras, I. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Orlowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006. (Sublibrary LNAI).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. XI, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. X1, 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4336: V.R. Basili, D. Rombach, K. Schneider, B.
Kitchenham, D. Pfahl, R.W. Selby, Empirical Software
Engineering Issues. XVII, 193 pages. 2007.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007. (Sublibrary LNAI).

Hh209%

Table of Contents

A Grammatical Genetic Programming Approach to Modularity in

Genetic Algorithms « cwsssams smems susmsimsamoms omsme cmswe swammems s 1
Erik Hemberg, Conor Gilligan, Michael O’Neill, and
Anthony Brabazon

An Empirical Boosting Scheme for ROC-Based Genetic Programming
ClasSIfiers . . o v oottt 12
Denis Robilliard, Virginie Marion-Poty, Sébastien Mahler, and
Cyril Fonlupt

Confidence Intervals for Computational Effort Comparisons 23
Matthew Walker, Howard Edwards, and Chris Messom

Crossover Bias in Genetic Programming 33
Maarten Keijzer and James Foster

Density Estimation with Genetic Programming for Inverse Problem

SOIVINE .« oot 45
Michael Defoin Platel, Sébastien Vérel, Manuel Clerque, and
Malik Chami

Empirical Analysis of GP Tree-Fragments 55
Will Smart, Peter Andreae, and Mengjie Zhang

Empirical Comparison of Evolutionary Representations of the Inverse
Problem for Iterated Function Systems 68
Anargyros Sarafopoulos and Bernard Buzton

Evolution of an Efficient Search Algorithm for the Mate-In-N Problem
INHCIESS sppemsessm: 20 BREEEEE 0 E e SRR PO TP OE EEEaE 25508 w 78
Ami Hauptman and Moshe Sipper

Fast Genetic Programming on GPUs 90
Simon Harding and Wolfgang Banzhaf

FIFTH™: A Stack Based GP Language for Vector Processing......... 102
Kenneth Holladay, Kay Robbins, and Jeffery von Ronne

Genetic Programming with Fitness Based on Model Checking 114
Colin G. Johnson

Geometric Particle Swarm Optimisation 125
Alberto Moraglio, Cecilia Di Chio, and Riccardo Poli

X Table of Contents

GP Classifier Problem Decomposition Using First-Price and
Second-Price AUCHONS : cu:ms susms cmsmmemns smeiss sniims wsmme s omima o
Peter Lichodzijewski and Malcolm I. Heywood

Layered Learning in Boolean GP Problems
David Jackson and Adrian P. Gibbons

Mining Distributed Evolving Data Streams Using Fractal GP
BnsemBles: s s msais 5o 5008 0 0 mEE s HE 05 o s 560 5 G § 6 b 5o o iorle o » d6 i = i
Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano

Multi-objective Genetic Programming for Improving the Performance
o) e 1 = PR PPUURP RSP VPP PRI g Py R
Cyril Fillon and Alberto Bartoli

On Population Size and Neutrality: Facilitating the Evolution of
Evolvabllity: ; susmecmaamnsns smrms o smsmmans s o mm s omn ems i s ioie oo
Richard M. Downing

On the Limiting Distribution of Program Sizes in Tree-Based Genetic
Programming.ouu i e
Riccardo Poli, William B. Langdon, and Stephen Dignum

Predicting Prime Numbers Using Cartesian Genetic Programming
James Alfred Walker and Julian Francis Miller

Real-Time, Non-intrusive Evaluation of VoIP
Adil Raja, R. Muhammad Atif Azad, Colin Flanagan, and
Conor Ryan

Training Binary GP Classifiers Efficiently: A Pareto-coevolutionary
APDIoach, s sims cxim: sosamsm: 9RiSE: (NI ERIUPEF L S IHE T E e w e
Michal Lemczyk and Malcolm I. Heywood

Posters

A Comprehensive View of Fitness Landscapes with Neutrality and
Fitness Clouds.ot
Leonardo Vanneschi, Marco Tomassini, Philippe Collard,
Sébastien Vérel, Yuri Pirola, and Giancarlo Mauri

Analysing the Regularity of Genomes Using Compression and

Expression Simplification i
Jungseok Shin, Moonyoung Kang, R.I. (Bob) McKay, Xuan Nguyen,
Tuan-Hao Hoang, Naoki Mori, and Daryl Essam

Changing the Genospace: Solving GA Problems with Cartesian Genetic
Programming : s: csws smsms cmsnmias 69 0s cuiNEIRIERITE SHIRE RIS
James Alfred Walker and Julian Francis Miller

Table of Contents

Code Regulation in Open Ended Evolution..........................
Lidia Yamamoto

Data Mining of Genetic Programming Run Logs
Vic Ciesielski and Xiang Lt

Evolving a Statistics Class Using Object Oriented Evolutionary
Programmingoounemiti i
Alexandros Agapitos and Simon M. Lucas

Evolving Modular Recursive Sorting Algorithms
Alexandros Agapitos and Simon M. Lucas

Fitness Landscape Analysis and Image Filter Evolution Using
Punctional-Level CGP i us susmmsme mime swsns smagsess snome ouemasan
Karel Slany and Lukd$ Sekanina

Genetic Programming Heuristics for Multiple Machine Scheduling
Domagoj Jakobovié, Leonardo Jelenkovié, and Leo Budin

Group-Foraging with Particle Swarms and Genetic Programming
Cecilia Di Chio and Paolo Di Chio

Multiple Interactive Outputs in a Single Tree: An Empirical
INVeStigationt
Edgar Galvdn-Ldpez and Katya Rodriguez-Vizquez

Parsimony Doesn’t Mean Simplicity: Genetic Programming for

Inductive Inference on Noisy Data iin..
Ivanoe De Falco, Antonio Della Cioppa, Domenico Maisto,
Umberto Scafuri, and Ernesto Tarantino

The Holland Broadcast Language and the Modeling of Biochemical
NEbWOTKS .« o o ittt e e et e e e
James Decraene, George G. Mitchell, Barry McMullin, and
Ciaran Kelly

The Induction of Finite Transducers Using Genetic Programming
Amashini Naidoo and Nelishia Pillay

Author Index

A Grammatical Genetic Programming Approach
to Modularity in Genetic Algorithms

Erik Hemberg!, Conor Gilligan', Michael O’Neill', and Anthony Brabazon?

1 UCD Natural Computing Research & Applications
School of Computer Science and Informatics
University College Dublin, Ireland
erik.hembergQucd.ie, conor.gilligan@ucd.ie, m.oneill@ucd.ie
2 UCD Natural Computing Research & Applications
School of Business
University College Dublin, Ireland
anthony.brabazonQucd.ie

Abstract. The ability of Genetic Programming to scale to problems of
increasing difficulty operates on the premise that it is possible to cap-
ture regularities that exist in a problem environment by decomposition
of the problem into a hierarchy of modules. As computer scientists and
more generally as humans we tend to adopt a similar divide-and-conquer
strategy in our problem solving. In this paper we consider the adoption
of such a strategy for Genetic Algorithms. By adopting a modular rep-
resentation in a Genetic Algorithm we can make efficiency gains that
enable superior scaling characteristics to problems of increasing size. We
present a comparison of two modular Genetic Algorithms, one of which
is a Grammatical Genetic Programming algorithm, the meta-Grammar
Genetic Algorithm (mGGA), which generates binary string sentences in-
stead of traditional GP trees. A number of problems instances are tackled
which extend the Checkerboard problem by introducing different kinds
of regularity and noise. The results demonstrate some limitations of the
modular GA (MGA) representation and how the mGGA can overcome
these. The mGGA shows improved scaling when compared the MGA.

1 Introduction

In the natural world examples of modularity and hierarchies abound, ranging the
biological evolution of cells to form tissues and organs to the physical structure
of matter from the sub-atomic level up. In most examples of problem solving by
humans, regularities in the problem environment are exploited in a divide-and-
conquer approach through the construction of sub-solutions, which may then be
reused and combined in a hierarchical fashion to solve the problem as a whole.
Similarly Genetic Programming provides as components of its problem solving
toolkit the ability to automatically create, modify and delete modules, which can
be used in a hierarchical fashion. The objectives of this study are to investigate
the adoption of principles from Genetic Programming [1] such as modularity
and reuse (see Chapter 16 in [2]) for application to Genetic Algorithms, and to

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 1-11, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 E. Hemberg et al.

couple these to an adaptive representation that allows the type and usage of
these principles to be evolved through the use of evolvable grammars. The goal
being the development of an evolutionary algorithm with good scaling char-
acteristics, and an adaptable representation that will facilitate its application
to noisy, dynamic, problem environments. To this end a grammar-based Ge-
netic Programming approach is adopted, in which the grammars represent the
construction of syntactically correct genotypes of the Genetic Algorithm. In par-
ticular, we compare the representations and performance of the meta-Grammar
Genetic Algorithm (mGGA) [3] to the Modular Genetic Algorithm (MGA) [4],
highlighting some of the MGA’s representational limitations, and demonstrate
the potential of a more expressive representation in the form of the mGGA to
scale to problems of increasing size and difficulty. Additionally, we consider the
introduction of noise into the Checkerboard problem, in order to assess how the
representations might generalise into noisy, real-world problem domains. The
remainder of the paper is structured as follows. Section 2 provides background
on earlier work in modular GAs and describes the meta-Grammar Genetic Al-
gorithm. Section 3 details the experimental approach adopted and results, and
finally section 4 details conclusions and future work.

2 Background

There has been a large body of research on modularity in Genetic Programming
and effects on its scalability, however the same cannot be stated for the Ge-
netic Algorithm (GA). In this section we present two modular representations
as implemented in the Modular GA [4] and the meta-Grammar GA [3].

2.1 Modular Genetic Algorithm

Garibay et al. introduced the Modular Genetic Algorithm, which was shown
to signficantly outperform a standard Genetic Algorithm on a scalable problem
with regularities [4]. The genome of an MGA individual is a vector of genes,
where each gene is comprised of two components, the number-of-repetitions
and some function which is repeated according to the value of the repetitions
field. For example, if we had a function (one ()) that always returned the value 1
when called and another (zero()) that returned the value 0 we have a represen-
tation that can generate binary strings. A sample individual comprised of three
genes might look like: {2, zero()}, {4, one()}, {2, zero()}, which would
produce the binary string 00111100. The MGA was shown to have superior
ability to scale to problems of increasing complexity than a standard GA.

2.2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [5],
which is in turn based on the Grammatical Evolution algorithm [6,7,8,9]. This is

A Grammatical Genetic Programming Approach to Modularity in GAs 3

a meta-Grammar Evolutionary Algorithm in which the input grammar is used
to specify the construction of another syntactically correct grammar. The gen-
erated grammar is then used in a mapping process to construct a solution. In
order to allow evolution of a grammar (Grammatical Evolution by Grammatical
Evolution (GE)?), we must provide a grammar to specify the form a grammar
can take. This is an example of the richness of the expressiveness of grammars
that makes the GE approach so powerful. See [6,10,11] for further examples of
what can be represented with grammars and [12] for an alternative approach to
grammar evolution. By allowing an Evolutionary Algorithm to adapt its repre-
sentation (in this case through the evolution of the grammar) it provides the
population with enhanced robustness in the face of a dynamic environment, in
particular, and also to automatically incorporate biases into the search process.
In this case we can allow the meta-Grammar Genetic Algorithm to evolve biases
towards different building blocks of varying sizes. In this approach we therefore
have two distinct grammars, the universal grammar (or grammars’ grammar)
and the solution grammar. The notion of a universal grammar is adopted from
linguistics and refers to a universal set of syntactic rules that hold for spoken lan-
guages [13]. It has been proposed that during a child’s development the universal
grammar undergoes modifications through learning that allows the development
of communication in their parents native language(s) [14]. In (GE)? the univer-
sal grammar dictates the construction of the solution grammar. In this study
two separate, variable-length, genotypic binary chromosomes were used, the first
chromosome to generate the solution grammar from the universal grammar and
the second chromosome generates the solution itself. Crossover operates between
homologous chromosomes, that is, the solution grammar chromosome from the
first parent recombines with the solution grammar chromosome from the sec-
ond parent, with the same occurring for the solution chromosomes. In order for
evolution to be successful it must co-evolve both the meta-Grammar and the
structure of solutions based on the evolved meta-Grammar, and as such the
search space is larger than in standard Grammatical Evolution.

2.3 Meta-grammars for Bitstrings

A simple grammar for a fixed-length (8 bits in the following example) binary
string individual of a Genetic Algorithm is provided below. In the generative
grammar each bit position (denoted as <bit>) can become either of the boolean
values. A standard variable-length Grammatical Evolution individual can then
be allowed to specify what each bit value will be by selecting the appropriate
<bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bit> ::= 1| 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks.

4 E. Hemberg et al.

<bitstring> ::= <bbk4><bbk4> | <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>
<bbk4> ::= <bit><bit><bit><bit>
<bbk2> <bit><bit>
<bbk1> <bit>
<bit> ::=1 1| 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be better to allow
our search algorithm the potential to uncover a number of building blocks of
any one size from which a Grammatical Evolution individual could choose from.
This would facilitate the application of such a Grammatical GA to:

— problems with more than one building block type for each building block
size,

— to search on one building block while maintaining a reasonable temporary
building block solution,

— and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [5]. An example of such a grammar for an 8-bit individual is
given below.

<g> ::= "<bitstring> :: <reps>

"<bbk4> :: <bbk4t>

"<bbk2> ::=" <bbk2t>

"<bbk1> ::=" <bbkit>

"<bit> ::=" <val>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbklt> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>" | 1] 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::=1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from
the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>

<bbk2> :

<bbk1> ::

<bit> :: 1

To allow the creation of multiple building blocks of different sizes the following
grammar could be adopted (again shown for 8-bit strings).

