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Preface

In 2007 the European Conference on Genetic Programming (EuroGP) reached
in its tenth year. What started out as a small workshop in 1998 in Paris has
grown considerably in size over the years both in number of attendees as well
as number of submissions. EuroGP is the only conference worldwide devoted
exclusively to genetic programming and all aspects of evolutionary generation of
computer programs. For the tenth year we came together to exchange our ideas
on the automatic generation of programs inspired by Darwinian evolution. The
main operators are reproduction, variation and selection. In nature, heritable
traits are passed from one generation to the next. Variations are introduced
through accidental mutations or by recombining genetic material from parents.
Selection occurs as a result of limited resources. The very same process is used
when trying to evolve programs using artificial evolution. The desired task for
the programs to perform is specified via the fitness function.

This year we received a record number of 71 submissions. A rigorous, double-
blind, selection mechanism was applied to the submitted papers. We accepted
21 plenary talks (30% acceptance rate) and 14 poster presentations (49% global
acceptance rate for talks and posters). Each submissions was reviewed by at
least three members of the international Program Committee from 19 different
countries. Each reviewer was asked for keywords specifying their own area of ex-
pertise. Submissions were then appropriately matched to the reviewers based on
their expertise using the optimal assignment of the conference management soft-
ware (MyReview) originally developed by Philippe Rigaux, Bertrand Chardon
and colleagues from the Université Paris-Sud Orsay, France. This version of the
MyReview system has been developed with funding from the European Coor-
dinated Action ONCE-CS (Open Network Connecting Excellence in Complex
Systems), funded under FP6 framework by the FET division (contract 15539).
Only small adjustments were then made manually to balance the work load
better.

Papers were accepted for presentation at the conference based on the re-
viewers’ recommendations and also taking into account originality, significance
of results, clarity of representation, replicability, writing style, bibliography and
relevance to the conference. As a result, 35 high-quality papers are included
in these proceedings which address fundamental and theoretical issues such
as crossover bias, issues such as chess game playing, real-time evaluation of
VoIP, multi-objective optimization, evolution of recursive sorting algorithms,
density estimation for inverse problem solving, image filter evolution, predicting
prime numbers, data mining, grammatical genetic programming, layered learn-
ing, expression simplification, neutrality and evolvability, iterated function sys-
tems, particle swarm optimization, or open-ended evolution. The use of genetic
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programming for several different applications shows that the method is a very
general problem-solving paradigm.

The 10th European Conference on Genetic Programming took place during
April 2007 11-13 in Valencia, Spain. The present volume contains all contribu-
tions that were accepted for publication either as talks or posters. All previous
proceedings have been published by Springer in the Lecture Notes in Computer
Science series. EuroGP was co-located with EvoCOP 2007, the seventh Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization,
and also EvoBIO, fifth European Conference on Evolutionary Computation, Ma-
chine Learning and Data Mining in Bioinformatics, and the series of EvoWork-
shops, focusing on applications of evolutionary computation. Evo* (pronounced
EvoStar) is the new umbrella name for the three co-located conferences and the
EvoWorkshops series, the increasingly important international event exclusively
dedicated to all aspects of evolutionary computing.

Many people helped to make the conference a success. We would like to
express our gratitude to the members of the Program Committee for their thor-
ough reviews of all papers submitted to the conference. Their constructive com-
ments made it possible for the authors to improve their original submissions
for final publication. We also thank the following institutions. The Universidad
Politécnica de Valéncia provided institutional and financial support, as well as
the lending of their premises and also helped with the organization and admin-
istration. The Instituto Tecnolégico de Informéatica cooperated with regard to
the local organization. The Spanish Ministerio de Educacién y Ciencia also pro-
vided financial support for which we are very grateful. We are thankful to Marc
Schoenauer, INRIA, France, for managing the MyReview conference manage-
ment software.

We especially thank Jennifer Willies and the School of Computing, Napier
University. Without her dedicated work and continued involvement with the
EuroGP conference from the initial start in 1998 to what now has become Evo*,
this event would not be what it is today.

April 2007 Marc Ebner
Michael O’Neill

Aniké Ekart

Leonardo Vanneschi

Anna Isabel Esparcia-Alcézar
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Abstract. The ability of Genetic Programming to scale to problems of
increasing difficulty operates on the premise that it is possible to cap-
ture regularities that exist in a problem environment by decomposition
of the problem into a hierarchy of modules. As computer scientists and
more generally as humans we tend to adopt a similar divide-and-conquer
strategy in our problem solving. In this paper we consider the adoption
of such a strategy for Genetic Algorithms. By adopting a modular rep-
resentation in a Genetic Algorithm we can make efficiency gains that
enable superior scaling characteristics to problems of increasing size. We
present a comparison of two modular Genetic Algorithms, one of which
is a Grammatical Genetic Programming algorithm, the meta-Grammar
Genetic Algorithm (mGGA), which generates binary string sentences in-
stead of traditional GP trees. A number of problems instances are tackled
which extend the Checkerboard problem by introducing different kinds
of regularity and noise. The results demonstrate some limitations of the
modular GA (MGA) representation and how the mGGA can overcome
these. The mGGA shows improved scaling when compared the MGA.

1 Introduction

In the natural world examples of modularity and hierarchies abound, ranging the
biological evolution of cells to form tissues and organs to the physical structure
of matter from the sub-atomic level up. In most examples of problem solving by
humans, regularities in the problem environment are exploited in a divide-and-
conquer approach through the construction of sub-solutions, which may then be
reused and combined in a hierarchical fashion to solve the problem as a whole.
Similarly Genetic Programming provides as components of its problem solving
toolkit the ability to automatically create, modify and delete modules, which can
be used in a hierarchical fashion. The objectives of this study are to investigate
the adoption of principles from Genetic Programming [1] such as modularity
and reuse (see Chapter 16 in [2]) for application to Genetic Algorithms, and to
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couple these to an adaptive representation that allows the type and usage of
these principles to be evolved through the use of evolvable grammars. The goal
being the development of an evolutionary algorithm with good scaling char-
acteristics, and an adaptable representation that will facilitate its application
to noisy, dynamic, problem environments. To this end a grammar-based Ge-
netic Programming approach is adopted, in which the grammars represent the
construction of syntactically correct genotypes of the Genetic Algorithm. In par-
ticular, we compare the representations and performance of the meta-Grammar
Genetic Algorithm (mGGA) [3] to the Modular Genetic Algorithm (MGA) [4],
highlighting some of the MGA’s representational limitations, and demonstrate
the potential of a more expressive representation in the form of the mGGA to
scale to problems of increasing size and difficulty. Additionally, we consider the
introduction of noise into the Checkerboard problem, in order to assess how the
representations might generalise into noisy, real-world problem domains. The
remainder of the paper is structured as follows. Section 2 provides background
on earlier work in modular GAs and describes the meta-Grammar Genetic Al-
gorithm. Section 3 details the experimental approach adopted and results, and
finally section 4 details conclusions and future work.

2 Background

There has been a large body of research on modularity in Genetic Programming
and effects on its scalability, however the same cannot be stated for the Ge-
netic Algorithm (GA). In this section we present two modular representations
as implemented in the Modular GA [4] and the meta-Grammar GA [3].

2.1 Modular Genetic Algorithm

Garibay et al. introduced the Modular Genetic Algorithm, which was shown
to signficantly outperform a standard Genetic Algorithm on a scalable problem
with regularities [4]. The genome of an MGA individual is a vector of genes,
where each gene is comprised of two components, the number-of-repetitions
and some function which is repeated according to the value of the repetitions
field. For example, if we had a function (one ()) that always returned the value 1
when called and another (zero()) that returned the value 0 we have a represen-
tation that can generate binary strings. A sample individual comprised of three
genes might look like: {2, zero()}, {4, one()}, {2, zero()}, which would
produce the binary string 00111100. The MGA was shown to have superior
ability to scale to problems of increasing complexity than a standard GA.

2.2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [5],
which is in turn based on the Grammatical Evolution algorithm [6,7,8,9]. This is
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a meta-Grammar Evolutionary Algorithm in which the input grammar is used
to specify the construction of another syntactically correct grammar. The gen-
erated grammar is then used in a mapping process to construct a solution. In
order to allow evolution of a grammar (Grammatical Evolution by Grammatical
Evolution (GE)?), we must provide a grammar to specify the form a grammar
can take. This is an example of the richness of the expressiveness of grammars
that makes the GE approach so powerful. See [6,10,11] for further examples of
what can be represented with grammars and [12] for an alternative approach to
grammar evolution. By allowing an Evolutionary Algorithm to adapt its repre-
sentation (in this case through the evolution of the grammar) it provides the
population with enhanced robustness in the face of a dynamic environment, in
particular, and also to automatically incorporate biases into the search process.
In this case we can allow the meta-Grammar Genetic Algorithm to evolve biases
towards different building blocks of varying sizes. In this approach we therefore
have two distinct grammars, the universal grammar (or grammars’ grammar)
and the solution grammar. The notion of a universal grammar is adopted from
linguistics and refers to a universal set of syntactic rules that hold for spoken lan-
guages [13]. It has been proposed that during a child’s development the universal
grammar undergoes modifications through learning that allows the development
of communication in their parents native language(s) [14]. In (GE)? the univer-
sal grammar dictates the construction of the solution grammar. In this study
two separate, variable-length, genotypic binary chromosomes were used, the first
chromosome to generate the solution grammar from the universal grammar and
the second chromosome generates the solution itself. Crossover operates between
homologous chromosomes, that is, the solution grammar chromosome from the
first parent recombines with the solution grammar chromosome from the sec-
ond parent, with the same occurring for the solution chromosomes. In order for
evolution to be successful it must co-evolve both the meta-Grammar and the
structure of solutions based on the evolved meta-Grammar, and as such the
search space is larger than in standard Grammatical Evolution.

2.3 Meta-grammars for Bitstrings

A simple grammar for a fixed-length (8 bits in the following example) binary
string individual of a Genetic Algorithm is provided below. In the generative
grammar each bit position (denoted as <bit>) can become either of the boolean
values. A standard variable-length Grammatical Evolution individual can then
be allowed to specify what each bit value will be by selecting the appropriate
<bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bit> ::= 1| 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks.
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<bitstring> ::= <bbk4><bbk4> | <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>
<bbk4> ::= <bit><bit><bit><bit>
<bbk2> <bit><bit>
<bbk1> <bit>
<bit> ::=1 1| 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be better to allow
our search algorithm the potential to uncover a number of building blocks of
any one size from which a Grammatical Evolution individual could choose from.
This would facilitate the application of such a Grammatical GA to:

— problems with more than one building block type for each building block
size,

— to search on one building block while maintaining a reasonable temporary
building block solution,

— and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [5]. An example of such a grammar for an 8-bit individual is
given below.

<g> ::= "<bitstring> :: <reps>

"<bbk4> :: <bbk4t>

"<bbk2> ::=" <bbk2t>

"<bbk1> ::=" <bbkit>

"<bit> ::=" <val>
<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbklt> ::= <bit>
<reps> ::= <rept> | <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>" | "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>" | 1 ] 0
<val> ::= <valt> | <valt> "|" <val>
<valt> ::=1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from
the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit> | <bbk2><bbk2><bbk2><bbk2>
| 11011101 | <bbk4><bbk4> | <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>

<bbk2> :

<bbk1> ::

<bit> :: 1

To allow the creation of multiple building blocks of different sizes the following
grammar could be adopted (again shown for 8-bit strings).



