W
=
=]
o
=
<]
=]
@
-
el
o
z
(L]
O
=




CCD
TECHNICAL UBRARY

SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

OF

MATRICES

BY

FRANK AYRES, JR., Ph.D.
Formerly Professor and Head,
Department of Mathematics
Dickinson College

Honeywell Information Systems
Technical Library ® MS 803A
300 Concord Road
Billerica, MA 01821

SCHAUM’S OUTLINE SERIES
McGRAW-HILL BOOK COMPANY
New York, St. Louis, San Francisco, Toronto, Sydney



CoryricHT © 1962, By THE
SCHAUM PUBLISHING COMPANY

All rights reserved. This book or any
part thereof may not be reproduced in
any form without written permission
from the publishers.

PRINTED IN THE UNITED STATES OF AMERICA



Preface

Elementary matrix aJgebra hassaow become an integral part of the mathematical background
necessary for such diverse fields as electrical engineering and education, chemistry and sociology,
as well as for statistics and pure mathematics. This book, in presenting the more essential mate-
rial, is designed primarily t® serve as a useful supplement to current texts and as a handy refer-
ence book for those working in the several fields which require some knowledge of matrix theory.

Moreover, the statements of theory and principle are sufficiently complete that the book could
be used as a text by itself.

The material has been divided into twenty-six chapters, since the logical arrangement is
thereby not disturbed while the usefulness as a reference book is increased. This also permits
a separation of the treatment of real matrices, with which the majority of readers will be con-
cerned, from that of matrices with complex elements. Each chapter contains a statement of perti-
nent definitions, principles, and theorems, fully illustrated by examples. These, in turn, are

followed by a carefully selected set of solved problems and a considerable number of supple-
mentary exercises.

The beginning student in matrix algebra soon finds that the solutions of numerical exercises
are disarmingly simple. Difficulties are likely to arise from the constant round of definition, the-
orem, proof. The trouble here is essentially a matter of lack of mathematical maturity, and
normally to be expected, since usually the student’s previous work in mathematics has been
concerned with the solution of numerical problems while precise statements of principles and
proofs of theorems have in large part been deferred for later courses. The aim of the present
book is to enable the reader, if he persists through the introductory paragraphs and solved prob-
lems in any chapter, to develop a reasonable degree of self-assurance about the material.

The solved problems, in addition to giving more variety to the examples illustrating the
theorems, contain most of the proofs of any considerable length together with representative
shorter proofs. The supplementary problems call both for the solution of numerical exercises
and for proofs. Some of the latter require only proper modifications of proofs given earlier;
more important, however, are the many theorems whose proofs require but a few lines. Some are
of the type frequently misnamed “obvious” while others will be found to call for considerable
ingenuity. None should be treated lightly, however, for it is due precisely to the abundance of
such theorems that elementary matrix algebra becomes a natural first course for those seeking
to attain a degree of mathematical maturity. While the large number of these problems in any
chapter makes it impractical to solve all of them before moving to the next, special attention
is directed to the supplementary problems of the first two chapters. A mastery of these will do
much to give the reader confidence to stand on his own feet thereafter.

The author wishes to take this opportunity to express his gratitude to the staff of the Schaum
Publishing Company for their splendid cooperation.

FRANK AYRES, JR.
Carlisle, Pa.
October, 1962
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Chapter 1

Matrices

A RECTANGULAR ARRAY OF NUMBERS enclosed by a pair of brackets, such as

9 3 7 1 3 1
(a) [ ] and Bb) |12 1 4],
1 =

15 4 7 6
and subject to certain rules of operations given below is called a matrix. The matrix (a) could be

0
0

: . 2x +3y +7
considered as the coefficient matrix of the system of homogeneous linear equations { z _ z 5 52

or as the augmented matrix of the system of non-homogeneous linear equations {2zi3; Z;
Later, we shall see how the matrix may be used to obtain solutions of these systems. The ma-
trix (b) could be given a similar interpretation or we might consider its rows as simply the coor-
dinates of the points (1,3,1), (2,1,4), and (4,7, 6) in ordinary space. The matrix will be used
later to settle such questions as whether or not the three points lie in the same plane with the
origin or on the same line through the origin. |

In the matrix

Q1181018 nn.... aiy,
Qpq BppBog.vveen.. Aoy
1.1y | ssisiesisaiesinsimsans
Ap1GpoCGpg .o nue... Ay

the numbers or functions az; are called its elements. In the double subscript notation, the first
subscript indicates the row and the second subscript indicates the column in which the element
stands. Thus, all elements in the second row have 2 as first subscript and all the elements in

the fifth column have 5 as second subscript. A matrix of m rows and n columns is said to be of
order "m by n" or mxn.

(In indicating a matrix pairs of parentheses, ( ), and double bars, ”

H are sometimes
used. We shall use the double bracket notation throughout.)

At times the matrix (1.1) will be called "the mxn matrix [a;;]" or "the mxn matrix 4 =
[aij]”- When the order has been established, we shall write simply "the matrix 4",

SQUARE MATRICES. When m =n, (1.1) is square and will be called a square matrix of order n or an
n-square matrix.

In a square matrix, the elements a4, ago, ..., a,, are called its diagonal elements.

The sum of the diagonal elements of a square matrix 4 is called the trace of 4.



2 MATRICES [CHAP. 1

EQUAL MATRICES. Two matrices 4 = [“ij] and B = [b,;]-] are said to be equal (4=B) if and only if
they have the same order and each element of one is equal to the corresponding element of the
other, that is, if and only if

aij:bij, (i=1,2,...,m:j=1,2,...,n)

Thus, two matrices are equal if and only if one is a duplicate of the other.

ZERO MATRIX. A matrix, every element of which is zero, is called a zero matrix. When 4 is a zero
matrix and there can be no confusion as to its order, we shall write 4 = 0 instead of the m xn
array of zero elements.

SUMS OF MATRICES. If 4 = [aij] and B = [bij] are two m xn matrices, their sum (difference), 4 +B,

is defined as the mxn matrix C = [c;:] , where each element of C is the sum (difference) of the
corresponding elements of A and B. Thus, A+B = [aij + bij] .

1 2 3 2 3 0
Example 1. If 4 = and B = then
0 1 4 -1 2 5

1%2 2+3 3+0 3 5 3
A+B = ] = ]
[0+(—1) 1+2 4+5 -1 3 9
1-2 2—-3 3-0 -1 -1 3
A-B - 5 ]
0—(—1) 1-2 4-5 1 -1 -1
Two matrices of the same order are said to be conformable for addition or subtraction. Two

matrices of different orders cannot be added or subtracted. For example, the matrices (a) and
(b) above are non-conformable for addition and subtraction.

and

The sum of £ matrices 4 is a matrix of the same order as A and each of its elements is k
times the corresponding element of A. We define: If k is any scalar (we call & a scalar to dis-
tinguish it from (%] which is a 1x1 matrix) then by k4 = Ak is meant the matrix obtained from
A by multiplying each of its elements by k.

1 -2
Example 2. If 4 = [ ] then
2 3
1 -2 1 -2 1 -2 3 —6
A+A+4 = [ ]+[ ]+ ] = = 34 = A-3
2 3 2 3 2 3 6 9
and
i =B =
s4 - [ 5(1) ( 2)] i [ 5 10]
=5(2) —-5(3) —-10 -15
In particular, by —A4, called the negative of A, is meant the matrix obtained from 4 by mul-
tiplying each of its elements by —1 or by simply changing the sign of all of its elements. For
every A, we have A +(—A) = 0, where 0 indicates the zero matrix of the same order as 4.

Assuming that the matrices A,B,C are conformable for addition, we state:
(a) A+B = B+ 4 (commutative law)
by A+ (B+C) = (A+B)+ C (associative law)
(c) k(A+B)y = kA + kB = (A+ B)k, ka scalar
(d) There exists a matrix D suchthat A+ D = B.

These laws are a result of the laws of elementary algebra governing the addition of numbers
and polynomials. They show, moreover,

1. Conformable matrices obey the same laws of addition as the elements of these matrices.



CHAP. 1] MATRICES

MULTIPLICATION. By the product 4B in that order of the 1xm matrix A = [ay1 a1, @15 ... a15] and

(514 |
b?l
b
the mx1 matrix B = | - | is meant the 1x1 matrix C = (@11 b11 +@1obor + -+ + aypbpa].
r
b11
le
& n
That iS, [all Ao ... alm] . . = [011 bll + Q190 le + ~aef aimb‘ml] = k§1 alkbkl .
| bms

Note that the operation is row by column; each element of the row is multiplied into the cor-
responding element of the column and then the products are summed.

1
Example 3. (a) [2 3 4] [—1] = [2()+3(=D+42)] = [7]
2

—2
(b) [3 -1 4] [6] = [-6—6+12] =0

3

By the product AB in that order of the m xp matrix 4 = [a;;] and the p xn matrix B = [bi;]
is meant the mxn matrix C = [¢;;] where b

Cij = @igbyj*ainbojt o tapbpy = X apphj, (=12....m j=12,...,n)

Think of A as consisting of m rows and B as consisting of n columns. In forming C = AB

eachrow of 4 is multiplied once and only once into each columnof B. The element cij of C is then
the product of the ith row of A and the jth column of B.

Example 4.
211 Q12 b b ag1 b1 +a10bo1  ay1b1o tagpbsgs
11 012
A B = ao1 Qoo [b " ] = ap1 b1y Y agobor agibigtagsbos
21 boo
azy ago agi b1y +agoboy agybio tagobos

The product AB is defined or 4 is conformable to B for multiplication only when the number
of columns of A is equal to the number of rows of B. If 4 is conformable to B for multiplication
(AB is defined), B is not necessarily conformable to A for multiplication (B4 may or may not be

defined). See Problems 3-4.
Assuming that 4, B, C are conformable for the indicated sums and products, we have
(e) A(B+C) = AB+ AC (first distributive law)
(fy A+B)C = AC+BC (second distributive law)
(g) ABC) = (4B)C (associative law)
However,

(h)y AB # BA, generally,
(i) AB = 0 does not necessarily imply A =0 or B = 0,
(j) AB = AC does not necessarily imply B = C.

See Problems 3-8.



4 MATRICES [CHAP. 1

PRODUCTS BY PARTITIONING. Let 4= [“ij] be of order mxp and B = [bij] be of order pxn. In
forming the product AB, the matrix 4 is in effect partitioned into m matrices of order 1xp and B
into n matrices of order px1. Other partitions may be used. For example, let A and B be parti-
tioned into matrices of indicated orders by drawing in the dotted lines as

(p1xnq) | (p1xng)

(myxpy) | (myxpo) ! | (m1xpa) = el e

A = |=memdd e e B = |(poxny) | (paxny)
(moxp1) | (’"'QXPQ) | (’TLQXPa) 4

(paxnq) ! (paxno)

B, | B
Ais | Aro | Asg iy 22
or A = —_+ ‘}_ B = Bgl | BQQ
Apy | Agg | Azs — 1T -
B3y | Bso

In any such partitioning, it is necessary that the columns of A and the rows of B be partitioned
in exactly the same way; however m,, mo, nqy, no, may be any non-negative (including 0) integers
such that my+ mo = m and nq+ n, = n. Then

AB - [A11B11+A12321+A13331 Ay1B1o + A1oBos + A15Bgs | _ [C11 Cm] - C
A21Biy + AgpByy + ApBay A21B12+A22322"‘A23332_ Cor Gy

210 1
Example 5. Compute 4B, given 4 =|3 2 0| and B = |2
1 01 2

Partitioning so that

we have AB

A21Byq +AgoBoy  Ap1Bio +AgpBys

3l i) [ o o [ [

oy 1] e 0w ] e

|
eI S

See also Problem 9.

[411B14 + A15B5 A11B1o +A12322]

—_
-

W 3
B oW
N O W
N OO

Let A,B,C, ... be n-square matrices. Let A be partitioned into matrices of the indicated

orders
(p1x p1) I(P1>< p2) i_ I (p1x ps) Ayr Ayo ... Ass
(p2x P1) | (pex p2) | - } (Poxps)|  _ | Asr Ao ... Aps
T T T T T T T T
....... IRRRERERIN IR IPPRERS
= — e s __f_____
(psx p1) | (psxp2) | --- | (psXx ps) Asi Asp ... Ass

and let B, C, ... be partitioned in exactly the same manner. Then sums, differences, and products
may be formed using the matrices A4, 415, ...; Bi4, B1o, ...; C14, Cqo, ....



CHAP. 1] MATRICES 5
SOLVED PROBLEMS
1 2-10 3 41 2 1+3 2+(—4) —-1+1 0+2 4 —
1. @ |4 o 21|+|1 50 3| = [4a+1 o0+5 240 1+3 = |s
-5 12 2 23 —l 242 —5+(=2) 1+3 2+(=1) 4 —

1 2-10 3 -4 1 2 3 2+4 -1-1 0-2 -2 6 -2 -2
() |4 0 2 1|-|1 50 3 4 = 2—-0 1-3 = 3 -5 2 -2
-5 12 2 -2 3 -1 —5+2 1-3 2+1 0 -3 -2 3

~ ~
oY )
- -
| w
IN»&HIN*H
| |
o N Lo N
| |
e S DD
N = O N = O
| ncR— [ I—
i 1l
IIl.lI =
R = W
| |
-
mo N 5o
(|
DD - wmw
Il o wo
N = O ]
S o N
o
- N

12 -3 -2 p g
2. If A=|3 4| and B=| 1 -5|, find D=|r s| suchthat A+B- D = 0.
5 6 4 3 t u

1-3—-p 2-2-¢ —2—-p —q 00
If A+B-D = |3+1—r 4-5-s| = 4—r —-1-s| = |0 O —2—-p=0and p=-2, 4-r=0

5+t+4—t 6+3—u 9—t¢ 9—u 00
-2 0
and r=4, ..... Then D = 4 —1| = A + B.
9 9

(a2 +53) +6(-1)] =[17]

2(4) 2(5) 2(6) 8 10 12
3(4) 3(5) 3(8| = 12 15 18
—1(4) —1(5) —1(6) -4 -5 —6

4 -6 9 6
@ [1 23] fo-7 10 7

w
= D
= -
— —
| 'S
- W N
—_— w
—
'S 2,
(9.} rl—_|
=2 - W N
— —_
I 1]

5 8 —11 -8

[1(4)+2(0)+3(5) 1(—=6) +2(=T) +3(8) 1(9)+ 2(10) +3(-11) 1(6)+2(7)+3(—8)]
(19 4 -4 —4]

@ 234 ; _ [y +3@ +4@] _ [e0
15 6|3 1) +5@)+6@3)| |29

- [121] ?'; _[t@+rzmrien 1-nr2E @] 30 s
402/ | 5 5 4(3)+0(1) +2(-2) 4(-4)+0(5)+2(2)| |8 -12

2—11
Then
1
" [ 11]2 11] [5-31] 5 ) 5—31|j—11 [11—30
A= =10 12flo 12|=]2 14 and A = A4 =|2 14|flo 12| =|8-138
1 o011 o1 3 -1 2 3 -1 2 01 8 —4 3

The reader will show that 4% = 4. 4% and 42.4°% = 4°. 42,

4. Let A
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5. Show that:
2 2 2
@) X agbrjt cpj) 2 aipbr; + 2 aicrj
s 3 s 3
<b)1. 1j= 14T j=1 iSy i
3 3 §
(c) X a"k(}zibkhch]) = h2=1(k=1 ik brn)chj
(@) E ajp(bpj +cgj iabpjtegs) +oagplbyitey) = @jbyjtagby) + (@y05+a5,05)
2
= 3 aikbkj + kglalkckj'
3 2
b) i:l]%laij = 1:2:.1 (@a;,ta;,*ta;) = (@11 tagp + a13) + (@21 + Goo t as3)
= (811t agq) t (a12 t a30) + (313 + a23)
2 2 2 3 2
) 1',2=1a‘i1 ¥ i{:iaiQ * i:1ai3 ) j2=1‘112=1a7:j'

This is simply the statement that
elements of each row or the elements of each column.

2 3 2

(c) ka a5 ( ,?:1 benenyp) = k§1 3 (bpaCej + bpoCos + bpass)

= ag1(br101j+ biocoj+ bigcaj) + ajplbprcyj + boocoj+ bogesy))
2 2 2

= (k%laikbkl)qj + (k2=1aikbk2)c2j + (kz‘-:laikbks)caj
3 2

= 2 (Z apbpen;.

6. Prove: If A= [a;;] is of order mxn and if B = [b,;] and C =
J 1]
AB+ AC.

The elements of the ith row of 4 are a;,, a;,, ...
, by

ai1(b1j+clj) + aiQ(ij*'cQ]) T

b1j+ €15, bQ]'+ Cojs e
the elements standing in the ith row and jth column of AB and AC.

7. Prove: If A= [aj;] is of order mxn, if B =

(5, ] is of order nxp, and if C = [¢;
then A(BC) = (AB)C.

in summing all of the elements of a matrix, one may sum first the

= (@i1b1a + ajobor)erj + (@41b12 + @igboo)coj + (ai1b1a + @ipbos)ca;

[cij] are of order nxp, then A(B + C)
a;, and the elements of the jth column of B +C are

jtenj. Then the element standmg in the ith row and jth column of A(B+C)is

in(bn]+°rl]) = 2 ak(bk]+ck]) = kZ “tkbk]+ Z atkckj, the sum of

] is of order px g,

The elements of the ithrow of 4 areajy, a4y, ..., a;, and the elements of the jth column of BC are 2 b1h ch]
h§1 bahhj - 2 bppcp;: hence the element standing in the ith row and jth column of 4 (BC) is
P P P n p
aj, hzzl bincpj + 640 h2=1 thchj + ..+ ooy, hz;.l bnhchj = kz=1 aip (h2:1 bkhchj)
P n n n n
= 2 (X aipbren; = (X ambri)erj + (X aipbra)esj + ..+ (X ainbipiey

This is the element standing in the ith row and jth column of (4B)C; hence, A(BC) = (AB)C.

8. Assuming 4, B, C,D conformable, show in two ways that (A +B)(C +D) =

Using (e) and then (f), (4 +B)(C+D) = (A+B)C + (A+B)D
Using () and then (e), (A +B)(C+D) AC +D)y +B(C+D)

= AC +BC +AD +BD.

= AC +AD +BC +BD
= AC +BC +AD +BD.

AC + AD + BC + BD.
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_ 100 .
100110$0 1 00|[1t oo [1 100 312} 4 1 2
9. @ [0102|g01l=1010[[o1of+|2|[312] = o1 0|+|6 24| =634
Loo1|3f_—- 00 1f[lo o 1] |3 00 1| [93 6] 9 37
312 .
— = - W =
10/00l00]|[10oi00]00 1 offr1 o l0] (o]
0o2'o00looflo 1'ooloo 0 2{lo 1
Bl Wty it || Il M i . #IE ¢
00(30/00[f00j10]00] _ 0
® 1o 01o4looflooiosioo [o] [04][03] [o]
ooTo oJ,rso ooTo oTzo [0] [0] 5 0|2 o
[0 010010 6[[0010010 3] i 0 6|lo 3
[1 00 0 0 O
020 0 0 O
_ 003 0 0 0
00012 0 0
000 010 O
000 0 0 18
1loo0o0lolft 213as516] [ [ilft2] [ripas] [r1][6
21lo000!lol[2314a5 67 2 1|2 3 2 1|4 5 6 2 1|7
S Sty Hid | I SN W - JL =
()00|312|034|567|8:3-12'134 312156’7 31 2][8
“’fooji12110/l4a51678]9 12145121678121J-9
0o0olo11lol[o 817 6514 01198l fot1)|r65] o1 1[4
__4____+_ -__*____'f—_
0o orooo0i1f87i654;1] | [1][87] [1]-[6 5 4] (1)[1] J
- ) -
[3 5[7 911][13 3 5 7 9 11 13
_ |[31 33][35 37 39][41]| _ |31 33 35 37 39 41
20 22||24 26 28{|30 20 22 24 26 28 30
13 13][13 13 13][13] 13 13 13 13 13 13
| (8 71(6 5 4ll1]] 8 7 6 5 4 1
X4 = a +ay
! o e . . y1 = bi12z4 +biozs
10. Let { xo = as1y1 + agpy, be three linear forms in y, and y, and let be a
Yo = boizi +boozy
X3 = Q31Yy1 t A3

linear transformation of the coordinates (y4, y,) into new coordinates (z,, z,). The result of applying
the transformation to the given forms is the set of forms

%1 = (@11b11 Y a10boq)z1 + (@11b1o + a10b05) 2
%o = (Ag1b11 +0bo1)zy + (@n1b10 + a90bys)zs
>
%3 = (ag1bys +agoby1)zy + (@31b15 +az0bos) 2z,
X1 11 Q12
Using matrix notation, we have the three forms |x,| = |as, ass Y1l and the transformation
Yo

) b X3 A31 Qg9
[}ﬁ] = [ 1.1 12:| I:Z{I' The result of applying the transformation is the set of three forms

Yo bo1 bosl|zo
X1 a11 Q19
_ bi1 biol|z1
Xo | = |G21 Qo2 b b
21 Doofl20
X3 azq1 Qgo

Thus, when a set of m linear forms in n variables with matrix 4 is subjected to a linear trans-
formation of the variables with matrix B, there results a set of m linear forms with matrix C = 4B.



1 2 -3 3 -1 2 4 12
11. Given 4 =|5 0 2|, B =|4 2 5|, and C =|0 3 2|,
1-1 1 2 03 1-23

12.

13.

14.

15.

16.

17.

18.

19.

20.

MATRICES [CHAP. 1

SUPPLEMENTARY PROBLEMS

4 1 -1 -3 1-5
(a) Compute: A+B 9 2 17|, A-C =] 5-3 0
1

3 - 4 0 1-2
-2 -4 6

(b) Compute: —24 =|—-10 0 —4|, 0:B =0
-2 2 =2

(c) Verify: A+ B —-C) = (A+B)-C.
(d) Find the matrix D such that A+D = B. Verifythat D = B—A = —(A —B).

1-1 1 1 23 -11 6 -1
Given A =|-3 2 —1| and B =2 4 6|, compute AB =0 and BA =|-22 12 —2|. Hence, AB#BA
L—210 1 23 —-11 6 -1
generally.
1 -3 2] 1 410 2 1 -1 -2
Given 4 =|2 1-3|, B=12 11 1|, and C = |3 —2 —1 —1|, show that AB = AC. Thus, AB = AC
4 -3 —1 1-212 2-5-1 0
does not necessarily imply B = C.
1 1 -] (13 L 5 @i
Given 4 =|2 0 3|, B =] 0 2|, and C = , show that (AB)C = A(BC).
2 0-2 1
L3 -1 2 -1 4
Using the matrices of Problem 11, show that A(B+C) = AB + AC and (A+B)C = AC + BC.

Explain why, in general, (4+B) = A2+ 24B + B? and A% - B%% (A —B)(A+B).

2 -3 -5 -1 3 5 2 -2 —4
Given 4 =|-1 4 5|, B = 1-3-5|,and C =|-1 3 4],
1 -3 -4 -1 3 5 1 -2 -3

(a) show that AB =BA =0, AC = A, CA =C.
(b) use the results of (@) to show that ACB = CBA, A2 _B? = (A—-BYA+B), A+ B)Q = A% + B2,

I
Given 4 = [; i]’ where i2 = —1, derive a formula for the positive integral powers of 4.

01

Show that the product of any two or more matrices of the set 10 ; 01 : 0- . =1 10 A 0 , =i 0
01 -10 1 0 0 -1 0 —i 0:

0 —if 10 i| s o matrix of the set.
- 0 i 0

Given the matrices 4 of order mxn, B of order nxp, and C of order rx g, under what conditions on p, g,
and r would the matrices be conformable for finding the products and what is the order of each: (a) ABC,
(b)y ACB, (c) A(B+C)?

Ans. (@) p=r,mxq (b)r=n=q; mXp (c)r=n,p=q; mxgq

Ans. A" = I, A, —I, —A according as n = 4p, 4p+1, 4p+2, 4p+3, where [ = [1 0].
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21.

22.

23.

24.

25.

26.

27.

28.

MATRICES 9

Compute AB, given:

[1 0 11 '10:0 5 1 0
(a)A:OI:1 and B:OILO Ans. |1 2 0
001 1110 110
- 10 —26
|1 03 1o i -
by A = 0 1.2] and B = A= ns. 2 5
- -1 2
_ L
12500 00101 [0 0 4 1
01/00 ool20 0020
(C) A = __.1___‘ and B = ———‘—‘—— Ans. 00
00!0 1 1000 01
0 012 2 01100 (2200
Prove: (a) trace (A+B) = trace 4 + trace B, (b) trace (kA) = k trace 4.
y1 = 21122 ¥1 1 2
= yy - 1-2 1 -
oy, = TR e B[ ) B R DR
Xo = &¥1 TY2 — o)3 ya = 221 +329 2 Ya 9 3|l*2

_ —2Z4 + 722
- —221 - 622 ’

If A= [aij] and B = [b,;j] are of order m X n and if C = [Cij] is of order n x p, show that (4+B)C = AC + BC.

Let 4= [aij] and B = [bjk], where (i = 1,2,...,m;j = 1,2,...,p; k = 1,2,...,n). Denote by 3; the sum of
B
n BQ

the elements of the jth row of B, that is, let Bj = k2=1bjk' Show that the element in the ith row of 4-| °

By
is the sum of the elements lying in the ith row of AB. Use this procedure to check the products formed in
Problems 12 and 13.

A relation (such as parallelism, congruency) between mathematical entities possessing the following properties:
(i) Determinative
(ii) Reflexive
(iii) Symmetric

Either a is in the relation to b or a is not in the relation to 5.
a is in the relation to a, for all a.

If a is in the relation to & then b is in the relation to a.

(iv) Transitive If a is in the relation to b and b is in the relation to ¢ then a is in the relation to c.
is called an equivalence relation.

Show that the parallelism of lines, similarity of triangles, and equality of matrices are equivalence
relations. Show that perpendicularity of lines is not an equivalence relation.

Show that conformability for addition of matrices is an equivalence relation while conformability for multi-
plication is not.

Prove: If 4, B, C are matrices such that AC = CA and BC = CB, then (AB + BA)C = C(AB + BA).



Chapter 2

Some Types of Matrices

THE IDENTITY MATRIX. A square matrix A whose elements ajj = 0 for i>j is called upper triangu-
lar; a square matrix 4 whose elements a;.= 0 for i<; is called lower triangular. Thus

)
(a1 @rp @1 .. ag])
0 ay agg Qon
0 0 as; ... ag,| is upper triangular and
| 0 0 0 Ann
[0, 0 0T
ay, Gy O 0
a3, Gz G3g ... O is lower triangular.
| n1 An2 Ons @nn |
_011 0 o0 )
0 a,, O 0
The matrix D =| 0 0 as; ... 0 |, which is both upper and lower triangular, is call-
[0 0 o .
ed a diagonal matrix. It will frequently be written as
D = diag(ayq, Aoy, g3, ---, Gyy)
See Problem 1.
If in the diagonal matrix D above, a,;= Gpo= ... = ayy, =4k, D is called a scalar matrix; if,
in addition, k=1, the matrix is called the identity matrix and is denoted by ,,. For example
100
L, = [(1) (1)] and I; = |010
001

When the order is evident or immaterial, an identity matrix will be denoted by /. Clearly,
I,+I,+... topterms = p-I, = diag(p,p.p,....p) and =11 .. to p factors = /. Identity ma-

; ; . 1 2 3
trices have some of the properties of the integer 1. For example, if 4 = [4 5 6]' then I, A4 =

=A.l; = [,Al; = A, as the reader may readily show.
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