Theory
of Computation

Wayne Goddard

Theny,
of Computation

Wayne Goddard = /7/,
ClemsunUmversi ///114 ' ,

7

LI .’ i

e

s |
A 2 !
: Do

World Headquarters

Jones and Bartlett Publishers Jones and Bartlett Publishers Jones and Bartlett Publishers
40 Tall Pine Drive Canada International

Sudbury, MA 01776 6339 Ormindale Way Barb House, Barb Mews
978-443-5000 Mississauga, Ontario L5V 1J2 London W6 7PA
info@jbpub.com Canada United Kingdom

www.jbpub.com

Jones and Bartlett’s books and products are available through most bookstores and online booksellers.
To contact Jones and Bartlett Publishers directly, call 800-832-0034, fax 978-443-8000, or visit our
website www.jbpub.com.

Substantial discounts on bulk quantities of Jones and Bartlett’s publications are available to corpora-
tions, professional associations, and other qualified organizations. For details and specific discount
information, contact the special sales department at Jones and Bartlett via the above contact infor-
mation or send an email to specialsales @jbpub.com.

Copyright © 2008 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in
any form, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system, without written permission from the copyright owner.

Production Credits

Acquisitions Editor: Tim Anderson
Production Director: Amy Rose

Editorial Assistant: Melissa Elmore

Senior Marketing Manager: Andrea DeFronzo
Manufacturing Buyer: Therese Connell
Composition: Northeast Compositors

Cover Design: Kate Ternullo

Cover Image: © Cindy Hughes/ShutterStock, Inc. and © Andreas Nilsson/ShutterStock, Inc.
Printing and Binding: Malloy, Inc.

Cover Printing: Malloy, Inc.

Library of Congress Cataloging-in-Publication Data
Goddard, Wayne.

Introducing the theory of computation / Wayne Goddard. — 1st ed.

p.cm.

Includes bibliographical references and index.

ISBN-13: 978-0-7637-4125-9

ISBN-10: 0-7637-4125-6

1. Machine theory. 2. Computational complexity. I. Title.

QA267.G57 2008

511.3°5—dc22

2007049462

6048
Printed in the United States of America
1211100908 10987654321

To Stuart, friend and collaborator forever

Instructions for using this book: Read, think, repeat.

To the Instructor

This is a text for an undergraduate course in the theory of computation;
it is also appropriate for courses in automata theory and formal languages.
The text covers the standard three models of finite automata, grammars,
and Turing machines, as well as undecidability. An introduction to time and
space complexity theories and a separate part on the basics of complexity
theory are also included.

Goals and Features

When I wrote this text, I focused on the standard material for a course
in the theory of computation or automata theory. As a result, this text
provides a concise introduction to core topics taught in a course on either
of these subjects.

One difference between this text and others on the subject is the use
of flowcharts for the pushdown automata. Another difference is that al-
though the material is undoubtedly mathematical, I have tried to reduce
the use of mathematical notation. Additionally, this text incorporates the
following:

B an engaging, student-friendly writing style that moves through material
at a pace appropriate for undergraduate students

M 2 wide range of problems, varying in level of difficulty, which allows
students to test themselves on key material covered in the given chapter

Preface

Solutions to selected exercises are in the appendix and are noted with
the symbol *. The most difficult exercises are labeled with the symbol @ .

Full solutions are provided in the Online Instructor’s Manual, which is
available online through the Jones and Bartlett website at: http://www.
jbpub.com/catalog/9780763741259/.

Organization

The text is divided into five parts: Regular Languages, Context-Free Lan-
guages, Turing Machines, Undecidability, and Complexity Theory. The fi-
nal chapter in each of the five parts can be viewed as optional-—specifically,
Chapters 5, 10, 16, and 19. These chapters provide additional information
but can be omitted without any impact on the overall course. I include
more material than necessary for a single semester course, which provides
instructors with the freedom to structure their course and omit or include
whichever relevant topics they choose.

To the Student

Welcome to the theory of computation! The material is theoretical, al-
though the early stages are less so. Part IV, Undecidability, is both theo-
retical and challenging.

As you work through the text, do not lose yourself in the theoretical
details. Remember the bigger picture! The finite automata and grammars
we see in the first few parts are two of the most efficient and successful tech-
niques in computer programming. The Turing machines and later material
show that there are limits to what computer programming can do, even if
the actual boundaries are not yet clear. There are problems, procedures,
programs, and paradoxes. I encourage you to read and re-read the more
difficult sections for better understanding.

The exercises are at varied levels of difficulty. Exercises that are more
challenging are marked with the symbol @ . Solutions to problems marked
with the symbol * are provided in the appendix.

Acknowledgments

I was very fortunate to have many people help me write and publish this
text. Thank you to my professor at MIT, Michael Sipser, for his instruction.
Thanks to family and friends, past and present. In particular, thanks go to
Steve Hedetniemi for offering some of his problems and to my students at
Clemson University who class-tested early drafts of the text.

Preface vii

Thanks also to the readers and reviewers whose comments greatly im-
proved the book:

Petros Drineas, Rensselaer Polytechnic Institute

Stephen T. Hedetniemi, Clemson University

K. N. King, Georgia State University

Anne-Louise Radimsky, California State University, Sacramento
Neil W. Rickert, Northern Illinois University

R. Duane Skaggs, Morehead State University

Nancy Lynn Tinkham, Rowan University

Jinhui Xu, State University of New York at Buffalo

I want to express my gratitude to the staff at Jones and Bartlett Publishers
for their hard work on this text. Thank you to Tim Anderson, Acquisitions
Editor; Amy Rose, Production Director; and Melissa Elmore, Editorial As-
sistant.

Wayne Goddard
Clemson SC

viii

Preface

Part I Regular Languages

1

Finite Automata

1.1 A Finite Automaton Has States .

1.2 Building FAs .

1.3 Representing FAs
Exercises

Regular Expressions

2.1 Regular Expressions

2.2 Kleene’s Theorem .

2.3 Applications of REs . .
Exercises

Nondeterminism

3.1 Nondeterministic Finite Automata

3.2 What Is Nondeterminism? .

3.3 e-Transitions

3.4 Kleene’s Theorem Revisited . . .

3.5 Conversion from RE to NFA . . .

3.6 Conversion from NFA to DFA . .

3.7 Conversion from FA to RE
Exercises

Properties of Regular Languages
4.1 Closure Properties

<

© Ut w W =

10

13
13
16
16
17

20
20
22
23
24
24
26
29
31

34
34

Contents ix

4.2 Distinguishable Strings 36
4.3 The Pumping Lemma 38
Exercises 40

5 Applications of Finite Automata 44
5.1 String Processing 44
5.2 Finite-State Machines 45
5.3 Statecharts 46
5.4 Lexical Analysis 46
Exercises, 48
Summary 49
Interlude: JFLAP, 50
Part II Context-Free Languages 51
6 Context-Free Grammars 53
6.1 Productions 53
6.2 Further Examples. 55
6.3 Derivation Trees and Ambiguity 57
6.4 Regular Languages Revisited 59
Exercises 60

7 Pushdown Automata 64
71 APDAHasaStack 64
7.2 Nondeterminism and Further Examples 67
7.3 Context-Free Languages 69
7.4 Applications of PDAs 69
Exercises 70

8 Grammars and Equivalences 73
8.1 Regular Grammars 73
8.2 The Chomsky Hierarchy 74
8.3 Usable and Nullable Variables 75
8.4 Conversion from CFG to PDA 76
8.5 An Alternative Representation 77
8.6 Conversion from PDA to CFG 78
BXCECISEE & : 5 s s w m B @ B a 2 5 ¢ 5 o 2 4 o . e s 80

9 Properties of Context-Free Languages 83
9.1 Chomsky Normal Form 83

9.2 The Pumping Lemma: Proving Languages Not Context-Free 85
Exercises 88

Contents

10 Deterministic Parsing

10.1 Compilers . .

10.2 Bottom-Up Parsing
10.3 Table-Driven Parser for LR(1) Grammars
10.4 Construction of an SLR(1) Table
10.5 Guaranteed Parsing

Exercises . .
Summary

Interlude: Grammars in Artificial Intelligence

Part III Turing Machines

11 Turing Machines

11.1 A Turing Machine Has a Tape
11.2 More Examples
11.3 TM Subroutines

12 Variations of Turing Machines
12.1 TMs as Transducers

12.2 Variations on t
12.3 Multiple Tapes

12.4 Nondeterminism and Halting

12.5 Church’s Thesi
12.6 Universal TMs
Exercises . .

R T R N

13 Decidable Problems and Recursive Languages
13.1 Recursive and Recursively Enumerable Languages

13.2 Decidable Questions

13.3 Decidable Questions about Simple Models
13.4 Reasoning about Computation

13.5 Other Models
Exercises . .
Summary

Interlude: Alternative Computers

Part IV Undecidability
14 Diagonalization and the Halting Problem

14.1 Self-Denial . .

91
91
92
93
96
100
102
106
107

109

111
111
115
117
118
118

122
122
123
124
125
126
126
127

131
131
133
133
135
136
136
139
140

Contents

14.3 Diagonalization Lo
14.4 The Halting Problem

Exercises

15 More Undecidable Problems

15.1 Reductions

15.2 Questions about TMs
15.3 Other Machines
15.4 Post’s Correspondence Problem
Exercises

16 Recursive Functions
16.1 Primitive Recursive Functions
16.2 Examples: Functions and Predicates
16.3 Functions That Are Not Primitive Recursive
16.4 Bounded and Unbounded Minimization
Exercises
Summary

Interlude: People

Part V. Complexity Theory

17 Time Complexity

17.1 Time . . .
17.2 Polynomial
17.3 Examples

TIME : 2 ¢ 2 smmmmm o 8 € 5 5 5 5 o b om oo s

17.4 Nondeterministic Time
17.5 Certificates and Examples

17.6 P versus NP

Exercises

18 Space Complexity

18.1 Deterministic Space,
18.2 Nondeterministic Space

18.3 Polynomial

18.4 Logarithmic Space

Exercises

OPACE : ; : wmemeE 3 § 8 5 8 8 6 BB E D e

19 NP-Completeness

19.1 NP-Complete Problems

19.2 Examples

145
148
150

151
151
152
154
156
157

159
159
161
163
164
165
167
168

169

171
171
172
173
175
176
178
179

181
181
183
183
185
186

xii

Contents

19.3 Proving NP-Completeness by Reduction
Exercises
Summary
Interlude: Dealing with Hard Problems

References and Further Reading
Selected Solutions to Exercises
Glossary

Index

201
203
217
225

-I-his book is about the fundamental capabilities and ultimate limitations
of computation. What can be done with what abilities.

We will see three main models of a computer: a finite automaton, a
pushdown automaton, and a Turing machine. In parallel with that we will
see other formal ways to describe computation and algorithms, through
the language of mathematics, including regular expressions and gram-
mars. In the last two parts of the book, we take our computer and ask
what can be solved, and if it can be solved, what resources are required,
such as speed and memory. Concepts such as finite automata are cer-
tainly useful throughout computer science, but even proving something
impossible is good because it tells you where not to look, that you have
to compromise on some aspect.

The input to our computers is always strings. We discuss this later,
but it is true that everything can be converted to questions about strings.

We start with the simplest form of computer, or maybe, machine. For
example, an automatic door. It spends all day either open or closed. The
design is simple. Open, closed. Or maybe opening, open, closing, closed.
Or maybe there's an override. This is the simplest form of a machine:
only internal memory, nothing external, just reacting to events. Ladies and
gentlemen, | give you the finite automaton.

Any language is necessarily a finite system applied with
different degrees of creativity to an infinite variety of
situations, . .. — David Lodge

Nature is a self-made machine, more perfectly automated than
any automated machine. —ZEric Hoffer

Mathematics, rightly viewed, possesses not only truth, but
supreme beauty—a beauty cold and austere, like that of
sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet
sublimely pure, and capable of a stern perfection such as
only the greatest art can show. —Bertrand Russell

I hate definitions. —Benjamin Disraeli

1.1

chapter

I he most basic model of a computer is the finite automaton. This is

a computer without memory; or rather, the amount of memory is fixed,
regardless of the size of the input.

A Finite Automaton Has States

A string is a sequence of characters or symbols. A finite-state machine or
finite automaton (FA) is a device that recognizes a collection of strings.
(The plural of automaton is automata.) An FA has three components:

1. An input tape, which contains a single string

2. A sensor or head, which reads the input string one symbol at a time

3. Memory, which can be in any one of a finite number of states—so we
speak of the current state of the automaton

The “program” of the FA prescribes how the symbols that are read affect
the current state. The final state for a string is the state the automaton
is in when it finishes reading the input.

Operating an
FA

1. Set the machine to the start state.

2. If end-of-string then halt.

8. Read a symbol.

4. Update the state according to current state and symbol read.
8. Goto step 2.

An FA can be described by a diagram. In the diagram, each state is
drawn as a circle; we sometimes name a state by putting its name inside the

3

CHAPTER 1 Finite Automata

circle. Each state has, for each symbol, an arrow showing the next state.
The initial or start state is shown by an arrow into it from no state.

The purpose of an FA is as a recognizer—essentially, it acts like a
boolean function. For any FA, certain states are designated as accept states
and the remainder are reject states. An accept state is indicated by a
double circle in the diagram.

Definition

An FA accepts the input string if the final state is an accept state, oth-
erwise it rejects the input string.

The following is an FA with 3 states called A, B, and C. The start state is
A, and C is the only accept state.

1
0 0
0
; T
1
1

Consider its behavior when the input string is 101001:

Current State Symbol Read New State

A 1 A
A 0 B
B 1 A
A 0 B
B 0 C
C 1 C

Here, the final state is C. Similarly, the final state for 11101 is A, and
for 0001 it is C.

What does it take to get to the accept state? This machine accepts all
strings of 0’s and 1’s with two consecutive zeroes somewhere.

1.2 BUILDING FAs 5

Consider the following FA.
1
(4) °
%,
0

This FA accepts strings like 100 and 0101001 and 11111, and rejects
strings like 000 and 0110.

Can you describe exactly which strings this FA accepts?

If you can’t wait, then read on. This FA ignores the symbol 0 (it doesn’t
change state). It only worries about the symbol 1; here it alternates states.
The first 1 takes it to state B, the second 1 takes it to state A, the third
to state B, and so on. So it is in state B whenever an odd number of 1’s
have been read.

That is, this machine accepts all strings of 0’s and 1’s with an odd
number of 1’s.

1.2

In these examples, we simply use letters for the names of states. Some-
times you can find more descriptive names.

Building FAs

There is no magic method for building FAs. It takes practice and thinking
(though some of the machinery in subsequent chapters will be helpful). In
this section, we consider how to build an FA for a specific purpose.

First, we need a few more definitions. An alphabet is a set of symbols.
A language is a set of strings, where the strings have symbols from a
specific alphabet. The language of an FA is the set of strings it accepts.
For example, the language of the first FA from Example 1.1 is the set of
all strings with alphabet {0, 1} that contain the substring 00.

We often use ¥ to denote the alphabet. Often the alphabet will be
{a, b} or {0, 1}; though this is abusing the term, we refer to strings from
the alphabet {0, 1} as binary strings. A unary language is one where
the alphabet has only one symbol.

The length of a string is the number of symbols in it. The empty
string has length 0: it is a string without any symbols and is denoted .

Sometimes the obvious natural idea works.

