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PREFACE

The book contains the text of the lectures presented at the first session of the
Summer School 1994 organized in Montecatini Terme by the C.I.M.E. Foundation.
The aim of the School was the presentation of the state of the art on recent
mathematical methods arising in Nonlinear Wave Propagation.

The lecture notes presented in this volume were delivered by leading scientists in
these areas and deal with Nonlinear Hyperbolic Fields and Waves (by Professor G.
Boillat of Clermont University), The Theoryv of Hyperbolic Conservation Laws (by
Professor C. M. Dafermos of Brown University), Qutline of a Theory of the KdV
Equation (by Professor P. D. Lax of Courant Institute NYU), Nonlinear Waves for
Quasilinear-Hyperbolic-Parabolic Partial Differential Equations (by Professor T.-P.
Liu of Stanford University). .

About fifty people (including research students and senior scientists) participated
actively in the course. There were also several interesting contributions from the
seminars on specialized topics.

We feel that the volume gives a coherent picture of this fascinating field of Applied
Mathematics.

Tommaso Ruggeri
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Non Linear Hyperbolic Fields and Waves

Guy Boillat

En face de la nature, il faut étudier toujours,
mais o la condition de ne savowr jamais.

R. Topffer

Introduction

Nonlinearity and hyperbolicity are essential features of Mechanics and Relativity.
In the last decennials much work has been done leading to a better understanding
of the systems in conservative form. Physics, however, as Infeld and Rowlands
remark[0]. still widely ignores the interesting properties of nonlinear theories. The
topics presented in these lectures with physical examples include: discontinuity
waves and shocks with particular emphasis on exceptional waves and characteristic
shocks: symmetrization of conservative systems compatible with an entropy law.
subluminal velocities in relativistic theories, systems with involutive constraints.
new field equations by means of generators with special attention to extended
thermodynamics and nonlinear electrodynamics. It is our hope that the applications
proposed in these lectures will awake a large interest in the nonlinearity of Nature.

1. Hyperbolicity, Conservative form

The N components of the column vector uw(k®) (a = 0,1,...,n) satisfy the N
partial differential equations of the quasi-linear system

(1) A (w) g = f(u), u, = 0u/dz”.
The matrix A” is supposed to be regular so that the system is usally written
ue + A, = f(u), 2=t i=1,2....,n

It is hyperbolic if, for any space vector n = (n;) the matrix A, := A'n; has
a complete set of (i.e., N) real eigenvectors [1]-[8]. If all eigenvalues are distinct
hyperbolicity is strict. In three-dimensional space this will not be possible for all
7 when N = 42,43, +4 (mod 8) [9],[10]. Therefore, there must correspond m()
eigenvectors to the eigenvalue AU) of multiplicity m). We denote them with the
initials of the Latin words laevus (left) and dexter (right). Two indices are needed,
one for the eigenvalue, the other one for the multiplicity : (l.(,J). However, the subscript
suffices if we agree that dy,dy., (J.J' = 1,2,..m)) are eigenvectors corresponding
to A9 dg.dg: to A¥) etc. Hence

(2) £5(A, —ADA% =0, (A, — AW A") dg = 0.

It can also be assumed that £; A% = 8.



For the system of balance laws encountered in Mechanics and Physics

(3) Iof*(u) = f(u)
the matrices A® are equal to the gradient of the vectors f® with respect to u
(4) A =V [,

so that with the choice u := f% A° = I. Although (3) expresses conservation laws
only when there is no second member, this system is nevertheless said to have
conservative form in reference to its first member.

2. Wave velocities
Discontinuities [uo] of the first order derivatives wu, may occur across some
characteristic surface (wave front) ¢(z®) = 0. In fact by a well known result of
Hadamard [11] .
[Ua] = padu

and taking the jump of (1) results in
A%ppdu =10

or, by introducing normal wave velocity An

Il

(5) A= —pi/lgrad ¢|, n; = pi/lgrad ¢
(Ap — M) du = 0.

The physical meaning of the eigenvalue A) is thus quite simple : it is the velocity
of the wave front propagating the weak discontinuity

(6) ou=rmld;, I=1,2,....m®.

It was Courant who suggested to Peter Lax that he study the evolution of these
discontinuities [12] and they showed [1].[13] how they propagate along the bichar-
acteristic curves

(7) dz®Jdo = YD J0ps,  dps/do = -0y [0z,

(8) P = @y + |grad o] AP (u, n)=0.
The velocity of propagation dv/0p; is the ray velocity

9) A=A +0X0T — H(RONOT), A= A7

I

In the non-linear case the components m' satisfy along the rays a Bernoulli

system of differential equation [44], [14]
(10) drn! /do + afnrll + |grad ¢| ' 7l vADd, =0

where the coefficients depend on the solution in the unperturbed state uo and on
the geometry of the wave front. (Another approach [15] involving discontinuities in
the derivatives of ¢, leads to an equivalent though different system [16]).



For asymptotic waves [1], [17], [18]
u=up(z) + u (% €)/w + us(x /.u +. E=wp
the equations of evolution given by Y. Choquet-Bruhat [19]-[22]
(11) oul J0o + |grad ¢| u! (VA dp) ou! /O& + (L,,u =0, u; = uld;

yields also (10) as a special solution : v/ = € 77, When wug depends on € see D. Serre
(23].

When the disturbance propagates into a constant state ug equation (7) shows
that the points M of the wave front S at time o are related to those M, of the
initial wave surface Sg by

A/I(O') = M() + A(U(). ;Zl)) a, T_Z(M) = ;{(AI(;) = 7_1’().

It follows that S and S, are obtained by translation (or are parallel surfaces) if

s -
A (or A) do not depend on n.

In the absence of a source term a simple wave [24]-[26] solution u = u(y) satisfies
the ordinary differential system [27]

(12) du/dp = o’ (p) dj(u, ;{)
where @(t. 2%) is explicitly defined by
glp) = zin; — A0 (u, ;{)t, 7 = const,

and g = ¢ or 0 (for centred waves).

This simple wave solution is important because it describes the state adjacent
to a constant state [26]. It singles out among the solutions for which the direction
of u, is submitted to some restrictions [28].

The velocity varies according to

(13) dA9) Jdp = o’ VA9 d;.
The characteristic equations of covariant field equations appear in covariant form
; 3...
(14) =GPV 0a0p...04 =0

where G is a completely symmetric tensor. The ray velocity is given by
(15) A = 0y /0¢q

and. in a relativistic theory. must not exceed the velocity of light i.e., the ray velocity
must be a time-like (or null) vector

(16) .(l(x/iAaAﬁ > 0
while the wave surface, by A%, = 0, satisfies

g9 lﬁ‘;arx‘loﬁ S 0.



The Rarita-Schwinger wave fronts, on the contrary, propagate faster than light [29].

3. Exceptional waves

The evolution equations (10) and (11) are nonlinear unless
(17) VAOd, =0, T=1,2,..m".

In this case we say with Lax [25], [26] that the wave is exceptional, for there is
no reason, in general, for the gradient of A®) to be orthogonal to its eigenvectors.
However, since it is clearly the case for linear fields (VA®) = 0), the velocity is also
said to be linearly degenerated. Instead, when VA.d # 0 the characteristic field is
genuinely nonlinear. By (6) the condition (17) is simply written

(18) oA =0
or by (9)

s ] =¥
(19) n.oA®D = 0.

The disturbance of the ray velocity, the only physically meaningful vector, one can
derive from (1), without further information on the field equations, is orthogonal to
the wave normal. Therefore, such a wave may also be called transverse wave [2].

The corresponding simple wave, by (13), moves with a constant velocity and first
integrals of (12) can then easily be found for conservation laws. In fact, since
d(frn — ADu) /de + udAD) Jdp = 0
Fa(u) = A (u)u = fo(uo) = A (uo) wo, AV (1) = A (ug),  ug = u(0).

The explicit solution of these equations will be given below [30].

In a covariant formulation exceptionality of (14) is expressed by
(20) 6P = Qapp... 040G =0, A = 0.

Only in this case does the disturbance of a tensor depending on ¢, have a covariant
meaning [31].

Actually, in spite of their name, exceptional waves are rather common and can
be encountered for instance, in the equations of Einstein for gravitation, of the fluids
(entropy and Alfvén waves [2]), of Monge-Ampere, of nonlinear electromagnetisni.
of Nambu [32]. Also multiple waves of conservative systems are exceptional [33], [34].
To see this take the derivative of (2) in the direction of dg-,

(VA, - XPVAYY dgidg + (A, — AR A%) Vdgdg — Ak (VAP dg) = 0.

exchange K and K’ and substract. The first terms drop out, due to (4), and the
result follows. As a consequence the system of two equations

wy + w'(u,0) wp =0, v+ w(u,v) v, =0

which has the double velocity A = w'n; cannot be put in a conservative form unless
the w*’s are constant (hence A exceptional).



Incidentally, when two velocities crossed for some value H(J(u) of m,a possibility
evoked in the first paragraph, thus creating a variable multiplicity. the important
criterion is the exceptionality (for ng) of the difference of these two velocities [35].

As an illustration consider the Euler equations of a fluid

e

Orp +div(pv) =0
(21) 0(p0) + Bip viT) + grad p = 0
D (pS) + div(pSv) = 0.

To compute the perturbations and velocities one makes the substitutions
)¢ . P = — —

(22) Oy — —A0, 0; = n;d, grad — nd, curl > n x 4§

or. simply in a covariant theory

(23) 8(1- Vu —P <sz’5~

Here one immediately obtains, with p = p(p, S).
(vp = A) 0p+ pdv, =0
p(vn — A) 5 + ﬁ(sp =0
(vp, — A) 6S = 0.

The entropy wave (45 # 0) moves with the fluid, A = vy, is exceptional, dv,, = dp =
0 and has a multiplicity equal to three (the number of arbitrary disturbances). The

ray velocity is v and 60 # 0.

For the sonic wave S = 0,06p = p'dp, A = v, £ /p'. The ray velocity is
A=T+ 7 n
Further

)II

- 1 1
24 IAN=ndA=%p (—+ _) dp.
(24) VI o)

The nonlinear d’Alembert equation derives from a variational principle with the
Lagrangian [46]

E=EQ), Q= -; 9*P0, udau, g*P = diag (1,-1,-1,-1)
and reads
(25) O (L'u®) =0, (L' g*° — L u®u?) Oqpu = 0, u® = g*? du.
With the substitution (23) the wave front is easily obtained
¥ =L g% 0app — L" (u%¢s)* =0

since
St = Padu.



According to (15) the ray velocity is
A® = L'.{/"Bapﬁ _ L"(uﬁ«pﬁ) u®
and, by (16),

(26) gapA*A? = —(u®ps)? (L' +2QL") L" > 0.

The expression of its covariant perturbation

(27) SN /0% = —2(uPpp) LAY /L' + (vPpp)?u™(L" — 3L /L")

is valid, as mentioned above, only in the exceptional case when ¢,dA% = 0 i.e..
(28) L" -3L"/L' =0

and reduces to its first term. However, it is true, in general, that

(29) GaOA™ = (u¥py)> (L = 3L" /L") §%u.

Now appears the difference with (24). For a fluid the scalar VAd does not change
sign when n varies (cf. the cases of magnetohydrodynamics [44] and nonlinear
electromagnetic media) [45]. Therefore, a spherical perturbation propagating in
a constant state will either increase without limit or decrease (compression or
rarefaction wave). On the contrary, if Q > 0 (29) changes sign across the critical
cone [36]
Uy

uzn
U
and the behaviour of the perturbation will depend on the direction of propagation.

=1

In one-dimensional propagation directional exceptionality cannot occur but it
may happen that the condition of linear degeneracy be verified only for some value
of the field u. This phenomenon appears in a rigid heat conductor and has been
studied in detail by Ruggeri, Muracchini and Seccia. They find critical temperatures
in agreement with those experimentally observed for the NaF and Bi crystals [42].

Of interest in microphysics [37] the scalar field also describes the static irrota-
tional isentropic and supersonic flow. In this case ([24], p.26 sqq.. [38]. p.201)]

5
v = grad u

and (25) can be rewritten
. , 1
(26 — uguy) dyu =10, Q)= -L'/L", Q= 5 v?
Although there is no velocity of propagation this equation is still hyperbolic provided
that 2 > ¢2. This is the condition for the existence of the characteristic surface

whose normal satisfies

implying
(30) (L' +2QL")L" > 0.

4. Exceptionality as a principle of selection

The concept of linear degeneracy introduced by Peter Lax plays a fondamental
role in the propagation of weak and, as we shall see later, of strong discontinuities.
Therefore, when the field equations are not completely determined one can require
the exceptionality of some wave(s) to solve the indeterminacy and then inquire about
the result which is expected to have some special physical or mathematical meaning.



A) Fluid
For a fluid equation (24) yields immediately the equation of state
(31) p=>5(S)—a(S)/p

which is the well-known law of von Karman-Tsien and frequently approximates the
pressure in the theory of subsonic flow ([24], p.10), [40]). A similar law

p=b—a®/(p+bc?)

holds in the relativistic case (p is now the density of energy) but another solution
exists [41]

p = pc?
the equation of state of the incompressible fluid whose sound waves travel at the
limit [90] speed of light ¢ both solutions of [19], [31], [87]

(32) (p+p/c) p" + 20" (1= p'/c®) =0, p' = p (p.S)/0p.
This last solution is the only possible one for a completely exceptional charged fluid

[52].

B) Elastic tube
The velocity v of a fluid of constant density p filling an elastic tube of section s
satisfies the equations

Ors + Oz (sv) =0
1
dv + i, v2 +p/p) =0, p=p(s).

We see immediately that the wave speeds are

A=v+t /sp'/p

11 (sp))
BA=(A-v) ( +, %,)7)5.9.

and

Thus the exceptional case corresponds to the pressure
p(s) = —a/2s* + b

which is the law of a rubber-like material. The theoretical and experimental study
shows indeed that no shock forms [59].

C) Scalar field
Instead the scalar field will be completely exceptional if (29) vanishes i.e., if the
Lagrangian satisfies
L/L/// _ 3L//2 -0

the nonlinear solution of which is

L= \/2k1Q+k2+k3



with two superfluous constants. Since, by (26), k1 and ks are of the same sign one
can choose

(33) L=vV2Q+k k>0.

This Lagrangian introduced by Max Born [47] has also been considered by Heisen-
berg [48]. In one space dimension the characteristic curves are isocline [46], ([38].
p.579, 617-20). [49].

From (27) follows

OANY /A

so that this weak discontinuity is zero when the ray velocity is normalized in time
(A° = 1) or in space-time (gagA®A? = 1).

This is general : the (normalized) ray velocity is not disturbed for an exceptional
wave of Euler’s variational equations (with a convex density of energy) [131].

We have just seen for the entropy wave that
d -
ON =0v, =0, A =dv #0.

Hence, the fluid equations do not derive (at least in three dimensions) from a unique
(Lagrangian) function but as we shall see below from a potential vector.

On the other hand, the elliptic signature of the metric for the static irrotational
fluid implies with (30), (33) k¥ < 0 and

=02 - |k|.

The analogy between the von Kdrman fluid and the Born theory has been observed
very early by means of the hodograph transformation [50], [51].

D) Born-Infeld Theory

If we apply a variational principle to a Lagrangian depending on the electromag-
netic invariants [53]-[55]

1 1 #
Q== Fap F*P, R= - Fop F**
4 4
the corresponding Euler equations

(34) 0a(LoF® + LrFP) = 0, Fop = Oadp — pda

yield the Maxwell equations when L is a linear function of ¢ and R with the result
that the electric field of a spherically symmetric particle at rest decreases like the
inverse square of the distance meaning also that the field grows without limit when
the distance tends to zero. By taking a non-linear Lagrangian, Born and Infeld
solved this difficulty and did much more. Max Born has told how the idea came [56]
; it all began in 1933 in Selva/Wolkenstein, South Tyrol...

There are two families of wave fronts satisfying the characteristic equation [57]

(7% + 1g**) Patp =0



where 797 is the usual Maxwell tensor and p(Q. R) takes on two values p; and o
determined by the knowledge of the Lagrangian.

It turns out that these two values coincide only when
(35) L=\-R24+k(2Q+k), pn=Q+k

which is just the Born-Infeld Lagrangian. Due to the multiplicity of the wave the
related system (34) is therefore completely exceptional but it is not the only one and
other Lagrangians share this property with (35). They have been determined. The
general one depends on several constants and gives (35) when one of them, maybe
related to the Planck constant, vanishes [57].

At distance 7 the electric field of a charged particle is just

E(r) = Vk/\/1+ (r/ro)t. E(0) = Vk

so that E? < k. More generally, for an admissible Lagrangian, 5

E?< min ((1.G). C=p—Q
and the limit value ( is called the absolute field. The electric field reaches this limit
in the frame moving with the ray velocities. For this reason. having also in mind the
entropy wave of continuum mechanics, we proposed [57] :
A stable particle moves along an exceptional bicharacteristic.

Thus are determined the equations of motion of the particles in nonlinear electro-
dynamics. The Born-Infeld theory was the first attempt to deal with the difficulties
of microphysics by means of nonlinear equations. Although its development was
hindered by this very nonlinearity it reveals from the mathematical point of view
an interesting structure. From the physical point of view it has been shown that
the present relativistic strings and membranes are just particular solutions of Born-
Infeld [32], [58].

E) Elasticity

Some waves propagating in elastic solids may be naturally exceptional at least in
certain direction or for certain kind of deformation [60]-[62]. Instead the requirement
of linear degeneracy [63]-[66] leads to the determination of classes of elastic potentials
containing the potentials of Grioli [67], Hadamard, Hooke, Mooney-Rivlin and
Tolotti [68].

F) Monge-Ampere equation
The nonlinear equation
ug + f(z, t,u,p,q,rys) =0
D =1Up, q=1Us, T =Ugg, S= Ugt
becomes quasi-linear when derivated with respect to t.

Assuming therefore discontinuities of the third order across a wave surface the
application of the operator (22) gives ér = 63u, ds = —A63u

AN Afs+ fr=0.
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The requirement that dA be zero for both velocities leads to
frr = Frfos =0, fofss —2fer =0
the integration of which results in [69]
F:= Huy + 2Kusr + Luge + M+ N (upptizy — IL?I) =0,

an equation due to Monge and Ampere (when N # 0) [70] and well suited for
initial-value problems ([1]. p.499).

Now it is natural to use this characteristic property to extend its form to n
independent variables or to higher orders. It follows in the first case that the Monge-
Ampere function F is a linear function of the Hessian of w and of all its minors [T1]
in accordance with the results found by direct calculation for n = 3 [72] or n = 4
[73]. In the second case introducing

X =0 u/otk 9z™ %, 0< k< n

and the Hankel matrix K(K;; = X;1j:4,) = 0.1.2,..m) the Monge-Ampere
function F is a linear function of all minors of K (including K) if n = 2m or
of K without its last row if n = 2m — 1 [74].

The Natan equation [55]

n

3 by (XiXjp - XjXip) + ) aiXi+a=0
i3

0

is of this type.

A long-forgotten equation hundreds of papers have appeared in the last years
on the Monge-Ampere field. It is also applied. For instance, a one-dimensional von
Karman fluid is such a field [75] and the third order equation has recently been used
for the thermodynamics of fluctuation [76], [77]. Sometimes the classical equation
can even be explicitely integrated (generalized Born-Infeld Lagrangians are Monge-
Ampere solutions [57]) and this is not the least interesting feature of this equation.

All these equations belong to the general class of the Monge-Ampere systems
which, among the nonlinear partial differential equations, is the closest to the quasi-
linear class sharing with it an important linear property [78].

5. Symmetric systems. Symmetrization.

If the matrices A® are symmetric and if A? is positive definite the system (1) is
called symmetric [1], [79]. It is always hyperbolic and the Cauchy problem is well-
posed [80], [81]. But where are these systems to be found? In 1961 Godunov [82]
discovered that the Euler equations of the fluid where the conservation of energy

1 X
O {ple+ ; v)}+0i {ple+, v*+p/p) v'} =0

replaces the last equation (21) were part of this class as well as the Euler variational
equations with the Lagrangian L(0,q°).



11

In fact introducing the new field variables

1 1 5, o

(36) @' = (G- v%v,-1), G=e+pV =TS, de =TdS — pdV, V =1/p,
(e is the internal energy and G the chemical potential) it appears that f© = u and
f* are just the derivatives with respect to u of the functions

KO = p/T. h'" = pv*)T: f* = V'h'

so that (3) takes a special symmetric form. The same can be done for the variational
equations (see below). Godunov then deduced for systems of this form the existence
of an additional conservation law.

Precisely in mechanics and physics systems of balance laws are supplemented
with a law of conservation of energy or entropy

(37) Joy h*(u) = g(u)
that must be compatible with (3) and therefore [83]
(38) Vh' = Vh A",

This is the starting point of the fundamental paper of Friedrichs and Lax. Differen-
tiating in the direction of an arbitrary vector v and multiplying by w one obtains

iVVhiw — VRVVY flow = tHA'w. H := VVA".

Exchanging v and w does not change the first member. Hence A" := HA' are
symmetric matrices and the system is symmetrized by multiplication

(39) Huy + A'u; = Hf.

One can only wonder at the fact that long-established theories of natural philosophy
[84], [85] possess this so propitious mathematical structure.

Let us introduce the field
(40) u = VhY.
By (39) it satisfies the equation
up + Aul = Hf

which is not specially interesting since it is neither symmetric nor conservative. We
multiply it by H~1! that is we go back to the original system making the Le Gendre
[91] transformation

(41) R =a'u—h°
and defining
(42) W= f* - bt

so that. by (38), (40), ]
dh'® = fdu'.
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As a result [92], [93]. ([22]. p.42)
fo = ne
and (3) becomes
(43) V2= f, A% =§f A%=VVa"

that is the symmetric conservative system found by Godunov. Multiplying (43) by
u’ he deduced (37) where the h™ are given by (41), (42). We shall see later that it is
convenient to consider the components of u’, called the main field by Ruggeri and
Strumia [92], as Lagrange multipliers [83], [94].

Now, according to the result of Friedrichs and Lax wherever there is an additional
law we may look for the main field ' and the generating functions A'*. Also for
complex fields [95].

A) Relativistic fluid
It is even simpler than the classical case. In a covariant formalism [92] it is easy
to check that
Td(rSu®) = ugdT*” — (G + 1) d(ru®)

and therefore, since
dh® = a'df“

he = —rSu®, f® = (ru®, TP
(44) h'* =pu® /T, @ = (G+1,—ug)/T.
Convexity of h° is warranted provided that the quadratic form also considered by
Friedrichs [101]
(45) Q =4 6f*,
is positive definite for some time-like vector £,. This means here
Cp >0, 0< (dp/dp)s < 1.

The important role played by the inverse of the absolute temperature has already
been underlined. It is the coldness and ug/T is the coldness vector [98], [99]. The
components of the main field u less familiar than the components of the physical
field u are interpreted as the observables of the system [100].

B) Hyperelastic material

In Lagrangian coordinates
1 2 ; :
u = (pv;, Fig, 5 PV +e), f! = (T vibl,viTi;)

where T;; is the first Piola-Kirchhoff stress tensor, Fj; the displacement gradient ten-
sor, e the internal energy, p the constant mass density of the reference configuration

and
de = TdS — Tideij-



