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Preface

Process intensification has been on the upswing since a review written by A.
Stankiewicz and J. Moulijn was issued in 2000. Meanwhile, companies and
academia are addressing problems in process intensification, organizing work-
shops and even establishing departments on this subject. Process intensification
is a very broad discipline and includes expertise in many diverse fields. It is ap-
plied to the development of novel apparatuses and techniques that either dramati-
cally improve chemical or biological processes with respect to reduced equipment
size, increased energy efficiency, less waste production, improved inherent safety,
or even break new ground in process engineering by introducing newly developed
equipment and production procedures. The present book focuses on modeling in
process intensification. Experts in various areas of process intensification, from
both industry and academia, have contributed to this book, which does not cover
all the developments in this field; rather it demonstrates the activities in modeling
for some representative problems. New equipment like microreactors, membrane
reactors, ultrasound reactors, and those in simulated moving-bed chromatogra-
phy, magnetic fields in multiphase processes or reactive distillation, requires new
modeling approaches. The same applies to nonstationary process operation or the
use of supercritical media. Process intensification is an emerging discipline that
will result in many surprising developments in the future.
The editor is grateful to all the authors who contributed to this volume, and to
Dr. Rainer Muenz from Wiley-VCH.
F. J. Keil
Hamburg, January 2007
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1
Modeling of Process Intensification — An Introduction
and Overview

Frerich J. Keil

As noted by Hiither et al. [1], the term “process intensification” (PI) was probably
first mentioned in the 1970s by Kleemann et al. [2] and Ramshaw [3]. Ramshaw,
among others, pioneered work in the field of process intensification. What does
“process intensification” (PI) mean? Over the last two decades, different defini-
tions of this term were published. Cross and Ramshaw defined PI as follows:
“Process intensification is a term used to describe the strategy of reducing the
size of chemical plant needed to achieve a given production objective” [4]. In a
review of PI, Stankiewicz and Moulijn [5] proposed: “Any chemical engineering
development that leads to a substantially smaller, cleaner, and more energy-
efficient technology is process intensification”. The BHR Group describes PI as
follows [6]: “Process Intensification is a revolutionary approach to process and
plant design, development and implementation. Providing a chemical process
with the precise environment it needs to flourish results in better products, and
processes which are safer, cleaner, smaller, and cheaper. PI does not just replace
old, inefficient plant with new, intensified equipment. It can challenge business
models, opening up opportunities for new patentable products and process chem-
istry and change to just-in-time or distributed manufacture”. To bring forward
PI, Degussa established a so-called “project house” whose research activities are
focused on PI. Degussa expanded the meaning of the concept “process intensifi-
cation”: “Process intensification defines a holistic approach starting with an
analysis of economic constraints followed by the selection or development of a
production process. Process intensification aims at drastic improvements of per-
formance of a process, by rethinking the process as a whole. In particular it can
lead to the manufacture of new products which could not be produced by conven-
tional process technology. The process-intensification process itself is “constantly
financially evaluated” [1, 7]. As can be recognized from the above definitions,
process intensification is a developing field of research and far away from a ma-
ture status. The chemical industry and academia are very interested in PI develop-
ments. For example, some German chemical engineering associations (DECHE-
MA, VDI-GVC) established a subject division on process intensification, which
has already more than 180 members. In the opening session of this division
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1 Modeling of Process Intensification — An Introduction and Overview

several sceptical questions arose, like: “Are any new options offered by PI which
are not known already from other fields of chemical engineering, e.g. optimiza-
tion or process integration?” “How large should be the improvement of a process
for PI?” “What is the difference between the aims of PI and neighbouring disci-
plines?” [8]. There is an agreement that PI is an interdisciplinary field of research
that needs an integrated approach. In PI, the journey is the reward.

PI has inspired already many new developments of equipment, process-
intensifying methods and design approaches. As thermodynamic equilibrium
and reaction kinetic properties are fixed values for given mixtures under fixed
conditions like temperature, pressure and catalysts, most efforts were directed
towards the improvement of transport properties, alternative energy resources,
and process fluids. Examples of new equipment are the Sulzer SMR static mixer,
which has mixing elements made of heat-transfer tubes, Sulzer’s open-crossflow-
structure catalysts, so-called Katapaks, monolithic catalyst supports covered with
washcoat layers, microreactors, ICI's High Gravity Technology (HIGEE), HI-
GRAVITECs rotating packed beds, centrifugal adsorbers made by Bird engineer-
ing, BHR’s improved mixing equipment and HEX reactors, high-pressure
homogenizers for emulsifications, the spinning-disc reactor (SDR) developed by
Ramshaw’s group at Newcastle University, and the supersonic gas/liquid reactor
developed by Praxair Inc. (Danbury). Various ultrasonic transducers and reactors
are now commercially available. The efforts in PI have been compiled in several
books [9-14]. A general introductory paper was presented by Stankiewicz and
Moulijn [5]. Process intensification by miniaturization has been reviewed by
Charpentier [15]. Jachuck [16] reviewed PI for responsive processing. Other sub-
jects related to process intensification have also been reviewed, for example,
trickle-bed reactors [17], multifunctional reactors [18], rotating packed beds [19],
multiphase monolith reactors [20], heat-integrated reactors for high-temperature
millisecond contact-time catalysis [21], microengineered reactors [22, 23], mono-
liths as biocatalytic reactors [24], membrane separations [25], two-phase flow
under magnetic-field gradients [26], and applications of ultrasound in membrane
separation processes [27].

In Fig. 1.1 an overview of equipment and methods employed in PI is presented.
PI leads to a higher process flexibility, improved inherent safety and energy effi-
ciency, distributed manufacturing capability, and ability to use reactants at higher
concentrations. These goals are achieved by multifunctional reactors, e.g. reactive
distillation or membrane reactors, and miniaturization that can be done by em-
ploying microreactors and/or improving heat and mass transfer. Microfluidic
systems enable very high heat- and mass-transfer rates so that reactions can be
executed under more severe conditions with higher yields than conventional reac-
tors. New reaction pathways, for example, direct fluorination of aromatic com-
pounds, are possible, and scaleup of reactors is easier. This feature may enhance
instationary reactor operation, like reverse flow, in industrial applications. These
are just a few examples.

Intensification of heat and mass transfer can be achieved by using supersonic
flow, strong gravitational magnetic fields, improved mixing, among other ap-



