j ' N

1449 $13.95

COMPUTER

PERIPHERALS

THAT YOU CAN BUILD

BY DR. GORDON W. WOLFE

COMPUTER
PERIPHERALS

THAT YOU CAN BUILD

BY DR. GORDON W. WOLFE

TAB|TAB BOOKS Inc.

FIRST EDITION
THIRD PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Copyright © 1982 by TAB BOOKS Inc.

Wolfe, Gordon W.
Computer peripherals that you can build.

Bibliography: p.
Includes index.
1. Computer input-output equipment—Amateurs’
manuals. |. Title.
TK9969.W64 621.3819'532 82-5688
ISBN 0-8306-2449-X AACR2
ISBN 0-8306-1449-4 (pbk.)

COMPUTER
PERIPHERALS

THAT YOU CAN BUILD

_DW%M?

e

Introduction

With this book about computer interfacing you can
add some peripheral devices to your home comput-
er that will add to the capabilities of the computer,
enhance your control over it, and increase your
enjoyment of the machine. It doesn’t matter what
kind of computer you have. In this book you will find
schemes specifically for the TRS-80, the PET, the
Apple II, and all the computers that use the ver-
satile S-100 bus and the SS-50/SS-30 bus. Yet the
use of this work is not restricted to those comput-
ers. If you can find the address, data, and control-
line busses in your computer and know what each of
the bus lines do, you can use the devices described
herein for any computer.

You don’t have to be an electronics wizard or
an electronics engineer to be able to use the book,
but you will have to have some basic knowledge
about electronic parts and computer programming.
It is assumed that you can read a schematic dia-
gram, and that you know what the symbols for
various electronic parts are and how to build a
circuit from a schematic. You should know the logic

symbols for the various logic gates, such as the
AND gate, the NOR gate, and the like. Appendix B
contains a short lesson in assembling a circuit from
parts and some of the common techniques used.

You should be familiar with your computer. at
least familiar enough to know where the expansion
ports are and how to program it.

Interfacing of peripherals is best done in
machine language. While it can be done in BASIC,
you have to do a lot of PEEKing and POKEing, and
you have to know exactly where to do it. Machine
language is faster than BASIC by approximately a
factor of one thousand. It will be very helpful if you
have a text editor and assembler for machine-
language programs and are quite familiar with
machine language or assembly language for your
machine. This means that you should understand
the “memory map” for your computer, so that you
don’t program over anything the manufacturer put
there on 'purpose. Most especially, you should
know where the locations of the output or expan-
sion ports are. Every machine is different.

vii

Because there are a large number of machines
in use and all have different memory maps and use
different processors, this book does not provide
specific programs. Rather, programs are presented
in a logical block-diagram form so that' you can
apply them to your specific computer.

I try not to use “buzzwords.” Check the glos-
sary if you come across a word you don’t under-
stand. Any language that isn’t part of a general
electronics background is properly defined on use.
The content is presented as follows: For each of the
machines described above, the book first tells you
how to build a “general parallel interface” for that
machine. After that, all peripherals are connected

viii

to that general interface, so there is no need to build
a different set of interfaces for every machine.

Lastly, this book tries to use integrated cir-
cuits that are commonly available. Almost all the
“chips” and parts used in this work are available
from large distributors like Radio Shack or Jim-Pak.
When a less common chip is used, the addresses of
at least two suppliers for it will be given.

Almost all of the peripheral devices in this
book can be built for under $50.00 in only a few
hours time. They use ten or fewer integrated cir-
cuits. I've built almost all of them myself and have
used them on my own machine, the SWTP 6800, an
SS-50 bus computer.

Contents

B T e

DO E R O i s 44K 5 455 44 405 €A A SN A A S F S VS A SRS A N s S n s e vii
What IS @ MiCroCOMPURET?cccceiiiinmerisienriensisinnssnenenissantnsssnnsansssssanssesssannessa srssssnassssssanns 1
Bus-Type Computers— Single-Board Computers—Desktop Computers—Compansons to Larger
Computers— Structure of Microcomputers—The Central Processing Unit—Memory—Peripherals—
Software

Conventions and Definitions............... ravssusNsmsyansarussLasdonssarne s nnn s usnsasuarasnniasanni e NG sessweaRi 16
Digital Gates—Binary Number Systems and Other Shortcuts—Data Busses—Address Decoding

ICETFACING ssvains cansrosssumsassavanmons asunssyamewesv o HssaHsas TR SRS NSRS AR P R ST AR aR TR 50
Parallel Interface Standards— Serial Interface Standards—Data Input Methods—A Universal Parallel

Interface for All Busses—Interfacing to RS-232 Serial Lines

Digital Peripherals with Parallel Input....... RS SO 95
Sense Switches—A Hexadecimal Keyboard—ASCIl Keyboard— Event Sensors— Event Counter and
Frequency Counter—Printer Interface—Parallel Interface for IBM Selectric—Control-Port Output—

Devices to Control—Paper-Tape Reader—Touch-Response Display—Dc Motor Control

Parallel Digital Ports and Analog Signalsccccccccmmirisncssenmnnnisssneresininnens snsnens SRR 134

Digital-to-Analog Converters—A Practical DAC—Programmable Voltage Source—Servo Controller—
Programmable Function Generator—Music Generator— Computer Graphics—X-Y Hardcopy—Paddle
Position Sensor and Joysticks— Voltage Measurements—A Simple, Single-Ramp ADC— A Simple ADC
Using a DVM Chip— Successive-Approximation ADC—An Advanced ADC for Multiple Conversions—
Computer-Generated Music—A Single-Bit Square-Wave. Generator—Sine Waves and Other
Waveforms with a DAC Music Generator— Top-Octave-Divider Music Generator—Two or More Voices
Simultaneously—A More Complex Sound Generator—An RC Interrupt Timer—A Crystal-Oscillator
Timer— Clocks— Systems Clocks and Multitasking— Direct-Reading Hardware Calendar Clock—
Stepping Motors—An X-Y Plotter Using Stepping Motors

6 Serial Peripherals..........ccccceecuerrienenn R R S TSR ST RS R SRV RS eSS unnnananibanaen cerenenas 204
Serial Data Storage and Retrieval (Cassette Recorders)—An Inexpenswe Tarbell Biphase Interface—
Kansas City Cassette Interface—A Hardware Random-Number Generator—A Morse-Code Practice
Oscillator and Keyer—Household Cpntrol via Electric Wiring—Modifying a Television Set to Act as a
Monitor—An Rf Modulator for TV-Set Use

Appendix A Pinout Diagrams of the Integrated Circuits Used.......... cremeressnreneennnes S 223

Appendix B Construction Techniques and Hints....................... creresnnrennnns EER— wssinins 282

Soldering— Wire-Wrapping—Handling MOS Integrated Circuits—Power Supplies—Sources of Parts
and Components

Glossary............... tesssrrrtesssssannnressnnnnnees R ssssexsRssvEsREY aEssRER S R R TRIERR 252

Bibliography..........ccceeeeruemruerrreenerencnnseseananes veeeresensaseane eeerensnennennas A RN 7 |

Chapter 1

T

1™

What Is a
Microcomputer?

In 1973, a remarkable thing happened. It is entirely
possible that future generations may look back to
that date and say, “Modern history begins here.” In
1973, the Intel Corporation came out with a new
device called a microprocessor. This was a large-
scale-integration (LSI) integrated circuit (an elec-
tronics package containing many thousands of indi-
vidual components) that was designed to be a pro-
grammable logic device. Intel called their new mar-
vel the 8008.

Until then, builders of electronic equipment
had spent thousands of man-hours designing cir-
cuits for the equipment. In the 1930s this involved
high-voltage power supplies and hundreds of vac-
uum tubes. With the invention of the transistor in
1956, designers were able to do away with both
high voltage and tubes and go to lower power and

smaller packages.
Soon designers found that they were spending

a lot of time designing and redesigning the same
circuits over and over again for the same purposes.

They found that several transistors could be made
from the same crystal of silicon and kept on the
same package: The integrated circuit was born!
Soon, an integrated circuit held an entire circuit
such as a gate, building block of logic design.Gates
could then be strung together to form logic devices
and create a whole device to do a specific task.

As the task requirements got more and more
difficult, designers once more found that they were
again and again putting the same configuration of
gates together in the same patterns in order to do
the same types of jobs. Manufacturers countered by
putting more transistors on a chip so that patterns
of gates could exist on a single integrated circuit.
Thus began medium-scale integration (MSI). For
example, why build a clock out of individual gates,
flip-flops, and counters—why not build a clock all
on one chip?

Large-scale integration, with even more com-
ponents on a chip, saw the advent of whole chips
being designed to do specific jobs, such as counters,

clocks, digital voltmeters, memory circuits, televi-
sion display generators, and the like.

Some bright person at Intel got the idea that,
because it's expensive to create a different inte-
grated circuit for each and every new task that
comes along, why not make an integrated circuit
that can be made to do anything if only you set 1t up
right. It wasn’t enough to have a set of output pins
on the chip to configure it for various tasks. What
you really needed was to have the chips read a set of
instructions and perform a set of tasks based on
what those instructions said to do. This is the mi-
Croprocessor.

Everyone started jumping on the bandwagon.
Designers worldwide began to see how they could
build devices using a microprocessor as the central
element. Many other manufacturers began selling
their own versions of the microprocessor. At this
writing, Intel has all but dropped the 8008, is con-
centrating on the 8080, and has just released the
8086 and 8085. Zilog developed the Z-80, which
used the same set of instructions as the 8080, but
was faster, easier to use, and had a wider variety of
instructions. Motorola brought out the 6800 family
of microprocessors and also marketed the 6502.
RCA ‘manufactures the 1802. There are several
others as well.

Microprocessors started showing up every-
where. One automatic manufacturer began in-
stalling microprocessors in its cars to monitor
fuel/air mixtures, among other things.

Two unforseen things happened to change the
course of electronic history. Surprisingly, both led
to the same final conclusion. The first was that
manufacturers of electronic devices were delighted
to find that product-design times went from
thousands of hours to only a few dozen hours. At the
same time they were horrified to discover that their
technicians and engineers were still spending
thousands of hours on product development—only
this time they were spending all the time trying to
program the device to do what they wanted! Many of
the technicians had never done any programming
before and were trying to figure out programming
methods while designing the product. The answer
to this was, of course, to develop the microprocessor

trainer, a small microprocessor with some memory
and readouts upon which the technician could learn
the programming language of the microprocessor.

The second development was even more sig-
nificant as far as you are concerned. The MITS
company of Albuquerque, New Mexico, which had
been a manufacturer of teaching and scientific in-
struments, developed a product called the AL-
TAIR. It was designed to be a small, home-built
computer programmable in machine language only
and readable only by a set of lights on the front
panel. This might have gone by the wayside were it
not for two facts: First, it was expandable. Inside
the case there were slots for adding more compo-
nents, such as memory and peripheral interfaces.
Second, and more important, the computer kit was
described in Popular Electronics. This magazine
appeals to the home electronics hobbyist. MITS
was overwhelmed by the large number of letters
and phone calls asking for information about the
computer and placing orders for it.

MITS had used the microprocessor as the
central processing unit in a computer, thereby in-
venting the microcomputer. It became a small de-
vice which had the computing power (if not the size
and total storage capabilities) of a large IBM main-
frame computer. Suddenly everyone wanted one.
People who had been hounding surplus dealers for
scrapped PDP-8s were now able to build and own
their own computer. Hobbyists discovered micro-
processor trainers, which were, in effect, small
computers themselves. The age was born.

BUS-TYPE COMPUTERS

The ALTAIR computer was significant, not
only because it was the first computer for public
use, but also because it was a bus-type computer. It
has a number of plugboard slots on a motherboard,
which takes signals from one plug-in circuit board
to another plug-in circuit board. The lines of con-
ductor that travel along the motherboard from one
board to another are called bus lines. The idea of a
bus is significant because it allows the computer to
be expandable. As your needs change, you can
change the computer by simply adding more circuit

cards to the plug-in slots. The original ALTAIR
came with a motherboard and power supply, a front
panel for data input by switches and data output by
flashing lights, a plug-in card containing a micro-
processor and some support circuitry to make it
work as a computer, and a plug-in card with a very
small amount of memory (128 bytes). It used an
8080 processor.

Two other bus-type computers were de-
veloped within a year. One was the IMSAI, which
used the same bus structure as the ALTAIR (and
the same processor) but was specifically designed
to be expandable. The power supply was huge com-
pared to the ALTAIR’s, so more boards could be
plugged in. Also, it had more slots available for
future use. The important advantage was that it was
designed to be compatible with the ALTAIR. IMSAI
boards would fit in the ALTAIR, and vice versa.
Programs for one would run on the other. This was
the birth of the S-100 bus.

The other bus-type computer marketed at the
same time as the IMSAI was developed by South-
west Technical Products Corporation (SWTP) of
San Antonio, Texas. It broke with tradition and
used the Motorola 6800 processor. It developed a
whole new bus structure, completely different from
the 100-line S-100 bus of the 8080. Since it had only
50 lines, it was deemed the SS-50. SWTP captured
a large part of the microcomputer market by offer-
ing more memory (about 16 times as much as the
ALTAIR), doing away with programming switches
and lights on the front panel, and putting into per-
manent memory a monitor which would allow input
to the computer and printout via a teletypewriter or
video terminal. In addition, they began selling their
programs for ridiculously low prices ($5.00 for a
BASIC interpreter), and that their computer sold
for less than either the ALTAIR or IMSAI, and the
race was on! Several other manufacturers, caught
by SWTPs low prices, began manufacturing plug-in
boards for this bus or offering programs for this
computer.

As an aside, it is interesting to note that at this
writing, there are hundreds of S-100 and SS-50 bus
manufacturers marketing circuit boards, but AL-
TAIR and IMSAI are no longer manufactured, while

SWTP is still going strong. The reasons have to do
more with business management than the quality or
desirability of the products, though.

SINGLE-BOARD COMPUTERS

While the bus-type computers were very ver-
satile, a minimum system to begin computing was
quite expensive, more than $1,000 in 1977. Many
people thought that they should be able to get into
personal computing for a lot less than that. Many of
them turned to microprocessor trainers. Still
others began manufacturing a minimum computer
system on a single circuit board. IMSAI manufac-
tured one for a short time. RCA got into this market
with the COSMAC ELF. It was the KIM-1 comput-
er, and more importantly, the Apple computer that
essentially captured this market.

The KIM and the Apple were self-contained.
There was no fancy (expensive) case with blinking
lights, just a processor, some memory (usually
1024 bytes), a monitor, and a hexadecimal keyboard
and display. The Apple had its own video-display
circuitry to be hooked up to a TV set for readout and
a connector for a keyboard. Both could be con-
nected to a small cassette recorder for permanent
storage of programs. The total price was some-
where around $650.00.

The savings was substantial, but there was one
drawback: they were not easily expandable. The
bus was still there, but it took some work to be able
to use it.

DESKTOP COMPUTERS

In 1978, another step forward was taken for the
home user of computers. Until this time, the home
computer had required some knowledge of com-
puter systems or electronics on the part of the user.
Single-board computers frequently had to have
power supplies constructed and added. The boards
for the plug-in computers had to be addressed and
configured.

Then the Tandy Corporation did what others
had been planning for some time—they marketed
the desktop computer. For the first time, no knowl-
edge of computer systems or electronics was re-

quired of the user. There was nothing to assemble
or wire: Just take it out of the box, plug it in, and
turn it on. Tandy was selling the TRS-80, a Z-80-
processor-based home microcomputer. It was
destined to outsell all other computer manufactur-
ers combined. Not only was the hardware insigni-
ficant to the user in that he didn’t have to do any-
thing but type on the keyboard, but the days of
programming it in machine language were also
gone. The TRS-80 had its own built-in BASIC in-
terpreter, which was available for the user from the
minute the computer was turned on.

Other manufacturers soon followed suit.
Commodore put out the PET, which used a 6502
processor, and Apple came out with the Apple II.
Instead of a single-board computer, it was now a
fully self-contained desktop unit, with all the fea-
tures of the TRS-80 (and then some). Furthermore,
there was provision for expansion of the computer
with a peripheral bus in the back! In all cases, the
user did his programming in BASIC, graphics
(drawing of pictures on the screen) were available,
there was instant cassette storage, and provision
had been made for some peripherals—such as disk
drives, printers, and telephone connections—to be
added later. The expansion port became the key to
more capability of the computer. In fact, what the
expansion port really is, is the computer’s bus
brought out to a connector so that more “boards”
may be plugged into it.

This book shows you how to tie into that ex-
pansion port in your desktop computer, or into the
bus of your bus-type computer, and add additional
capabilities to your computer.

COMPARISONS TO LARGER COMPUTERS

There is really very little difference between
the microcomputer and its larger cousins, the
minicomputer and the standard mainframe. The dif-
ferences are only two: physical size and word size.

Until about ten years ago, a “computer” was a
behemoth manufactured by IBM, or Honeywell, or
Control Data Corporation. A computer filled up a
room and took a large staff of experts to run. The
popular idea of a computer was several large racks
full of blinking lights and spinning tape drives. The

minicomputer of ten years ago did little to change
that concept beyond shrinking the size of the
machine to the size of a refrigerator. Microcomput-
ers today tend to be about the size of a television set
or a sewing machine. Prices are commensurate
with size.

The real difference between the three com-
puter types is the size of the data word, or how
many “bits” the computer can process simultane-
ously. Mainframe computers process 32 or 36 bits
simultaneously; minicomputers, usually 16, and
microprocessors, only 8.

A bit is a single on-off state in a computer.
Eight bits together form a byte (note: four bits to-
gether are a nybble). A byte is a convenient size to
process because it can represent a binary number
from 0 to 255, any one of 128 letters or characters,
or one of 256 data instructions. Note that a
minicomputer processes two bytes at a time; a
mainframe processes, four, and a micro, only one. It
is said that a micro has a one-byte word, a mini has a
two-byte word, and a mainframe has a four-byte
word. (Chapter 2 discusses bits, bytes, and words
further.)

Some people say that the real difference be-
tween a microcomputer and the others is that a
microcomputer uses a microprocessor as the cen-
tral processing unit. This is not necessarily so. The
Digital Equipment Corporation PDP-11 minicom-
puter uses a 16-bit microprocessor called the LSI-
11. There are several other 16-bit microprocessors
on the market.

Physical size is no guarantee that the com-
puter is a mini or a micro, either. All computers
have the capability of adding more memory or more
peripheral equipment. (That’s what this book is all
about.) A microcomputer can interface with a
9-channel magnetic tape drive just as easily as a
mainframe can. Hard disk drives are already com-
mon on many microcomputers. Bascially, a general
rule that the microcomputer enthusiast should not
forget is a microcomputer can do anything any
larger computer can do. It may take it a little more
time, but it can be done, subject only to sufficient
memory and the operator’s willingness to interface
more equipment to it. Most peripherals that will

work with a mainframe will also work with a micro
(with the right interfacing).

STRUCTURE OF MICROCOMPUTERS

All computers (including microcomputers)
have the same basic internal structure. They all
have a processing unit (in this case the micro-
processor), memory for both permanent and tem-
porary storage of data or instructions, and a means
of sending data to or receiving it from some other
device. (It has to get the data from some place and
do something with it when it’s done.) Figure 1-1is a
general illustration of a computer.

The central portion of the microcomputer is
the microprocessor, which acts as a central pro-
cessing unit. It requires a source of power and clock
pulses (which in effect tell it when to execute the
next instruction). As far as the computer as a whole
is concerned, it acts by itself as a bus driver. Con-
nected to the bus driven by the CPU are the various
memory locations and input/output registers.

These supply data to the bus, store data from the
bus, or take data from the bus and deliver it to an

outside device, called a peripheral. It is the deliv-
ery of information to and from these peripherals via
the data bus that we are concerned with in this
book.

Every microcomputer has three busses. They
generally run side-by-side, so we can talk about the
“computer’s bus,” but it is in reality three different
busses. The first of these is the data bus. In a
microprocessor system this is usually eight lines
that can carry data in either direction, either from
the microprocessor to the addressed device, or
from the device to the microprocessor. Some bus-
ses, such as the S-100 bus, have two single-
direction data busses. This increases the complex-
ity of the system slightly, as you will need bus
drivers for each of the busses and logical systems to
tell when each of the busses needs to be used. In
most systems, there exists only a single bidirec-
tional data bus of eight lines, with only one “trans-

CONTROL BUS

PERIPHERAL PERIPHERAL

| | | |

1T LI

CPU RAM ROM

PIA PIA

J Ll | L1 d

1 U J L

DATABUS

ADDRESS BUS

Fig. 1-1. General structure of a computer.

mitter” and one “receiver” active on the bus at a
time. (More is given in Chapter 2 in the discussion
on three-state buffers and bus logic.)

The second of the busses is the address bus.
Most microprocessors use a sixteen-line address
bus, although some use only an eight-line bus. Still
others use eight lines as a data bus sometimes, and
the same eight lines as part of the address bus. The
Motorola 6809 does this. Since each of the
address-bus lines can be in either a high (+5V) or a
low (OV) state at any time, there are 2'° possible
combinations of high-and-low on the address bus.
This means that 65,536 possible addresses, or
memory locations, may be accessed by the proces-
sor. Each memory location is a spot that contains,
can take, or can supply eight data bits to or from the
data bus. This is the memory of the computer. It will
be very useful to you if you have a memory map of
your computer. This tells you where in memory (at
what values of the address bus) your readable
memory and input/output devices are. It will be
indispensable for interfacing to peripheral devices.
(See Chapter 2 on in address decoding for more on
memory maps.)

The third bus may be the most important of the
three. Tt is the control bus. It essentially tells the
other busses how and when to work. The control
bus is usually 10 to 12 lines (although it may be
many more, as in the S-100 bus) which tell the
external components on the bus what the micro-
processor wants from them. Types of signals will
vary from one microprocessor to the next, but gen-
erally there will be signals such as the system
clock, ground line, power lines, signals to tell the
memory locations that a memory address is being
looked for, signals to tell the memory whether the
present operation is a read or a write operation,
interrupt-request lines, requests for the processor
to halt for a DMA (direct memory access) operation
by a peripheral, confirmation by the processor that
it’s okay to go ahead with DMA, a signal to reset the
whole system, and the like. Some busses use a line
to let the memory location know that the present
operation is an input/output operation, while others
will use separate lines to inform the memory of read
and write operations. Still others, such as the SS-50

bus, keep the serial-data-rate clock signals on the
bus. Most will have at least two separate interrupt
lines, maskable and non-maskable, while others
will have interrupt-priority vectors. The whole
thing can get quite complicated. If you are going to
be interfacing to the bus, you really need to know
what all those bus lines do and what their signals
mean.

THE CENTRAL PROCESSING UNIT

The central processing unit has come to mean
the microprocessor itself. That is, it means the LSI
integrated circuit that performs the logical and
arithmetic functions. However, it is actually more
than that. It also includes the bus driver/buffers,
the system clock, the reset functions, and the like.
A microprocessor cannot function by itself; it needs
some support hardware, just as it needs a certain
minimum amount of memory to perform basic
tasks.

First, though, what is a microprocessor and
how does it work? Broadly, it is a programmable
logic device that can obtain and execute instruc-
tions. That is, the function or logical operation that
the device accomplishes may be altered by supply-
ing additional data at its inputs. By the execution of
these instructions, the microprocessor can cause
the rest of the microcomputer to do the following:

1. It can input and output data in digital form.
The data can be numbers, characters, or control
codes. This data can be exchanged between and
among the microprocessor and several peripheral
devices, such as memory, printers, video displays,
paper tape readers, disk memories, cassette tapes,
and laboratory instruments.

2. It contains an arithmetic logic unit (ALU)
which can perform arithmetic or logical operations
such as add, subtract, compare, store, shift the data,
perform logical AND, perform logical OR, take the
complement of.

3. It can take any data from its interior and
send it to a specific memory location, where it may
be stored or sent to a peripheral device.

4. It is programmable; that is, it can have its
function changed externally by allowing the mem-

CONTROL
BUS

ADDRESS BUS < ADDRESS BUFFER

PROGRAM
COUNTER
CONTROL STACK REGISTER
BUFFER POINTER A
INDEX REGISTER
REGISTER B
INSTRUCTION CONDITION
REGISTER CODE
REGISTER
ALU

DATA BUFFER

DATA BUS

Fig. 1-2. Block diagram of 6800 microprocessor.

ory to contain different instructions. Data and in-
structions may be arranged in any order, in contrast
to a programmable calculator, in which data goes
into data registers and instructions go into instruc-
tion registers.

You might ask how does a microprocessor
work? It is not strictly necessary to know how it
works to be able to use it, just as it is not necessary
to know how a television set works to be able to
watch the news. Perhaps it might be instructive to
give a general description of the interior:

Figure 1-2 gives a block diagram on the in-
terior of the Motorola 6800 processor. Notice that
the insides seem to be filled with registers. A regis-
ter is a place for temporary storage of data. All a
microprocessor does is move data from one regis-
ter to another or modify the data existing in a
register.

As an example of how a processor works, let’s
take the following three instructions of 6800 code
and work through them step-by-step to see what is
really happening in the microprocessor.

B6 01 07 LDA A $0107 Loadregister A with
the contents of the
memory location
whose address is

0107 (hexadecimal).

8B 06 ADD A #$06 Add 6 to what is in
A.

08 INX Increment the index
register by 1.

B7 00 STA A 0,X Store register A in

the memory location
given by the value in
the index register.

The way the processor will do it is this:

LDAA $0107 Increment the program counter.
Put the value of the program coun-
ter into the Address register.
Send a “read memory” request, and
get the information from the data
register.

Increment the program counter.

Put the value of the program
counter into the address register.
Put out a “read memory” request,
and get the information from the
data register.

Put the two bytes of data just re-
ceived into the address register.
Send a “read memory” request, and
get the data from the data register.
Put the data from the data register
into accumulator A.

Increment the program counter and
get the next instruction from mem-
ory.

ADDA #$06 Increment the program counter.
Place the contents of the program
counter into the address register.
Send a “read memory” request and
wait for data from the data register.
Add the contents of the data regis-
ter to the A register.

Increment the program counter and

get the next instruction.

INX Add one to the index register.
Increment the program counter and

get the next instruction.

STAA 0,X Place the index register into the
address register.

Place register A into the dataregis-
ter.

Increment the program counter.
Send a “write data” request.
Increment the program counter and

get the next instruction.

The act of getting the next instruction involves
placing the program counter onto the address regis-
ter, sending a “read data” request, getting the data
from the data register, and placing it in the instruc-
tion register.

All this seems like an awful lot of work, but it
only takes 17 machine cycles, which is about 17
microseconds. Note that all that is happening is the
data is being moved around from ane register to
another or is being modified while in a register. It is
the control-bus signals that tell the rest of the

computer what to do. The address register is con-
nected to the address bus, and the data register is

connected to the data bus.
Please note also, that a location in memory

may contain either data or instructions. The
machine can execute an instruction to get an in-
struction from a specific location in memory, and
that instruction may tell it to work on some data at
another memory address. The data itself may con-
sist of a number in any of several formats. It may be
a character in any of several formats which may, for
example, be part of a letter that is being written on
the computer keyboard (to be printed later on a
typewriter), or it may be some condition code that
is meaningful only in the context of the particular
program being run at the time (such as, if this
location contains a one, print the results on the
printer, if it is zero, put the results on the video
display).

I mentioned above that the address and data
registers were connected directly to the address
and data busses. When a read or write is com-
manded from the CPU, that is meant to state that
“an address is on the address line—look at it, and if
you are the address in question, read (or write) data
from (to) the data bus.” The problem with most
microprocessors is that they are usually rather
low-power devices. These low-power devices have
to interface to many chips, sometimes dozens or
scores, that read the information on them. This
process is called farnout. Microprocessors are ca-
pable of delivering what is called “one TTL load,”
which is a way of saying that they can interface to
one TTL integrated circuit without affecting either
the voltage or current characteristics of the output.
Once you try to interface the microprocessor to
several chips, which are all likely to be TTL inte-
grated circuits, you have trouble.

That is why there are special integrated cir-
cuits called bus drivers that take the “one TTL load”
for the microprocessor and increase the capability

of its bus lines. Some of these integrated circuits
are capable of driving a total of 30 TTL loads, or of
having 30 TTL integrated circuits “listening in” on
the bus. If you need more than 30, just space the
drivers down the bus every so often. For address-
bus lines, the bus drivers need to work only in one

direction. The microprocessor tells, via the ad-
dress bus, what address is to be accessed. For
data-bus lines, depending on the type of bus, you
may need bidirectional drivers, that is, drivers
which will send information either to or from the
processor.

MEMORY

The very concept of the data processor, which
executes one instruction after another, assumes
that the instructions and the data upon which to
work are stored in a place that the processor can get
to easily. Earlier I talked about the continuous fetch
and execute cycle. The CPU is continually fetching
instructions and then executing them on data, both
of which are brought in from external memory. This
important concept of the CPU relying on memory
cannot be overstressed. The CPU is a very impor-
tant and powerful part of a microcomputer, but it
cannot work without memory. The CPU needs to be
told what to do, when to do it, and what to do it with.
The arrangement of instructions in the memory is
the software, or the computer program. The instruc-
tions or data are entered into memory, not by the
CPU, but by the computer programmer. The CPU
can only interpret and carry out these instructions
and act upon the data in memory. The CPU does not
contain the instructions or data, but only looks for
them in memory.

How does the computer know what part of the
memory to look for its instructions in? The ar-
rangements of highs and lows on the address bus, as
well as control signals that tell the computer that
the CPU is looking for a specific memory location,
tells the computer memory that a fetch or write
cycle is being processed. Each individual memory
location asks itself, “is it me?” —“is it me?” —"“is it
me?” Only the one that corresponds to the same
patterns of highs and lows can answer, “YES!—It’s
me!” and will either place its contents on the data
bus, or change its contents to correspond to what is
on the data bus. the “Is it me” —“yes, It's me” cycle
is memory address decoding, and the whole process
is called a memory read/write cycle.

Note that with 16 data lines, there are 2'°
possible memory locations, or 65, 536 possible data

9

