


iy 05 1 p
" E60) . % 2

MATHEMATICAL SURVEYS
' NUMBER 1

'THE PROBLEM OF MOMENTS

BY
J. A. SHOHAT

AND
J. D. TAMARKIN

_ BROWN UNIVERSBITY




PREFACE

- The problem of moments is of fairly old origin, but it received its first syste-
‘matic treatment in the works of Tchebycheff, Markoff, Stieltjes, and, later,
Hamburger, Nevanlinna, M. Riesz, Hausdorff, Carleman, and Stone. The
_subject has an extensive literature, but has not been treated in book or mono-
graph form. In view of the considerable mathematical (and also practical)
_interest of the moment problem it appeared to the authors desirable to submit
such & treatment to a wide mathematical public. In the present monograph
the main attention is given to the classical moment problem, and, with the
exception of a few remarks concerning the trigonometrical moment problem, no
mention is made of various generalizations and modifications, important as
they may be. Furthermore, lack of space did not permit the treatment of
important developments of Carleman and Stone based on the theory of singular
integral equations and operators in Hilbert space. On the other hand, a special
chapter is devoted to the theory of approximate (mechanical) quadratures,
which is intimately related to the theory of moments and in many instances
throws additional light on the situation. ;

The bibliography at the end of the book makes no claim to completeness.

The authors wish to acknowledge with gratitude the help received from Brown
University and the University of Pennsylvania (through its Faculty Research
Committee) in preparing this manuseript for.publication. .



INTRODUCTION

1. Brief historical review. In 1894-95 Stieltjes published a classical paper:
“Recherches sur les fractions continues” containing a wealth of new ideas;
among others, a new concept of integral—our modern ‘‘Stieltjes Integral”. In
this paper he propoeses and solves completely the following problem which he
calls “Problem of Moments”:

Find a bounded non-decreasing functlon Y¥(z) in the mterval [0 ) such that

its “moments’’ -/o. " dy(z),n =0,1,2, ---, have a prescribed set of values

1) | j‘;ux"dtll(x)-—-p,,, n#O, 1,2, ...

The terminology “Problem of Moments” is taken by Stieltjes from Mechanics.
[Stlelt_]es uses on many occasions mechanical concepts of mass, stability, etc., in
solving analytical problems.] If we consider dy(z) as a mass distributed over

[z,  + dzx] so that f A dy/(t) represents the mass distributed over the segmenf
[0, 2]—whence the mo:lern designation of ¢¥(z) as “distribution function’’—then
[ﬁ z dy(z), ]: z dqp(z_) represent, respectiyely, the first (statical) moment and
thf second moment (moment of inertia) with respect to O of the total mass

'( dy(z) distributed over the real semi-axis [0, ). Generalizing, Stieltjes

calls f z" dy(z) the n~th moment, with respect to 0, of the given mass distribu-

tion characterized by the function ¥(x).
Stieltjes makes the solution of the Moment-Problem (1) dependent upon the
nature of the continued fraction “corresponding” to-the integral

I = [ B o mym_ g
@ »
1, 1] e
Ialz +|a2+ +|a‘ 9

and upon the closely related “associated” continued fraction

(3) : Al I - hz l i )\3 I ak
|z 4+ a |z + ¢ lz+cs
derived from (2) by ‘“‘contraetion”:
el 8 | e
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vili THE PROBLEM OF MOMENTS

Making use of the theory of continued fractions Stieltjes shows that in (2) all
@ are positive (which results in the positiveness of all A and ¢; in (3)).*

“He further shows that this necessary condition is also sufficient for the existence
of a solution of the Problem of Moments (1). In terms of the given sequence
{#a] this condition is equivalent to the positiveness of the following deter-
minants - ‘

(4) A”= S X L = I”’ll+i|?'h0; : n.——'o’ 1,‘2’--~’

-----------------

1 M2t M Hasl
- Mz M3t Hadl Had2
(5) A” == | eesersecr s -- Ell‘i+i+1l:i-0; _'”sﬂorl,z’unu_

Mo+l Hai2 °°° ‘ﬂrﬂn M2n 41

The solution may be unique, in which case we speak of a “determined Moment-
Problem”’; or there may be more than one solution in which case there are, of
necessity, infinitely many solutions; our Moment-Problem is then “indeter-
minate”. Stieltjes illustrates the latter case by a remarkable example. He
~ further gives an effective construction of certain solutions of the Moment-
Problem (all, of course, essentially the same in case of a determined problem)
~ which in the indeterminate case turn out to possess important minimal proper-
ties. Here the denominators of the successive approximants to the continued -
fractions (2) and (3) play an important role. In passing Stieltjes introduces an
important new proposition dealing with the convergence of series of functions
~ of a complex variable (now known as the Stieltjes-Vitali Theorem) which leads
to a complete solution of the problem of convergence of the continued fraction
(2) in the complex z-plane. Here Stieltjes shows that the Moment-Problem
(1) is determined or irideterminate according as the continued fraction (2) is
" convergent or divergent, that is, according as the series > a: diverges or con-
# verges. The interesting fact that the continued fraction (2) may converge for
_certain z (to the value I(z, ¥)), while the series 3% (—1)'uz""" diverges for all
z is demonstrated. ' - :

‘*.In the subseciuent discussion we write

il w© ' }

LAY B

b 2— Y £ % 2

80 that t.hé corrésponding.and aasociated continued fractions (‘2)4‘ and (3) are replaced re-
spectively by ’ : o .

1] . 1] 1‘\" n | a | 'hl
N8 TNt s d - s SO
(4 +V|lg +‘1@3 G o [z—a lz—a |z-a

where all ls; 1 are positive, all I are negative, and \; and ¢; are positivé;
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- Stieltjes was not the first to discuss either the Moment—Problem or the con-
- tinued fraction (3). “The first considerations along these lines are due to the
great Russxan mathematician Tchebycheﬁ who in a series of papers started in

1855 discusses integrals of the type l r() d yy
; _ ;
0 2

(—, ©),and sums of the type 3 e

by a Stieltjes Integral). Tchebycheff’s main tool is the theory of continued
fractions which he uses with extreme ingenuity. However, Tchebycheff was
not interested in the existence or comstruction of a solution of the Moment~

Problem, ;

where p(x) is non-negatxve in

= 0; # 0 (both cases are now covered
<

(6) - [ @)z dz = pa, n=012‘...

_.but mainly in the following two problems a) How far does a given sequence of
moments’ determine the function p(z)? More particularly, given - ‘

;[‘p(z)a:"'dz = ‘[ue""'a_:"d:c, e Mo 0, 1, 2, 0005

cah we conclude that p(xr) = e ', or, as'we say now, that the distribution ;
‘charactenzed by the function [ p(t)dt is a normal one? This is a fundament.al |

i problem in the theory of probability and in mathematical statistics. b) What
are the properties of the polynomials wa(z), denominators of successive ap-
proximants to the continued fraction (3)? This opened a vast new field, the
general theory of orthogonal polynomisls, of which only the classical poly-

~ nomials of Legendre, Jacobi, Abel—Laguerre and Laplace—Hermite were

“~known before Tchebycheff. In the work of Tchebycheff we find numerous
Mﬁ' orthogonal polynomm.ls to interpolation, approximate quadra- -

tures, ex on of functions in series. Later they have been applied to the.
general theory of polynomials, theory of best approximations, theory of proba-
bility and mathematical statistics. : '

Another work which preceded that of Stieltjes is the classical work of Heine

(1861, 1878, 1881) Here we find a brief discussion of the continued fraction

 associated with f P_(ﬁ)i;l , Where the glven function p(x) is non-negative m

~ (a, b), and also an application of the orthogonal polynomials w.(z) to approx-
imate quadratures,
One may venture the opinion that the use of this integral and of continued
fractions was suggested to Stieltjes by the work of Tchebycheff and Heine.
- We must emphasize the importance of the new analytical tool, the Stieltjes..
Integral, which made it possible to treat the Problem of Moments in its most
general form, namely,

b [z"d‘p(z).—.p.., n=0,12 .



AR P e
e L o ohe O e s st e S

e THE PROBLEM OF MOMENTS

One of the most talented pupils of Tchebycheff, A. Markoff, continued the
work of his teacher applying it, in particular, to the theory of probability
(“method of moments” applied to the proof of the fundamental limit-theorem), .

d
and to the closely related problem of finding precise bounds for f dy(z),

a <c¢ <d < b, where the function y¥(z) is non-decreasing in (a, b), its first
# + 1 moments being given. This important problem was proposed and its
solution, based on the now celebrated ‘“Tchebycheff inequalities”, was given
without proof by Tchebycheff in 1873. The proof was supplied by Markoff in
~ his Thesis in 1884. It is interesting to note that Tchebycheff inequalities have
been proved simultaneously and in the same manner by Stieltjes. Markoff
further generalizes the Moment-Problem (1896) by requiring the solution

p(z) to be bounded:
[ z"p(x) dr = pn, n=2012---, with 0 =< px) = L.

In his investigations, as in those of his teacher, continued. fractions play &
predominant role. 7 ; ,

As often happens in the history of science, the Problem of Moments lay

dormant for more than 20 years. It revived again in the work of H. Ham-
burger, R. Nevanlinna, M. Riesz, T. Carleman, Hausdorff, and others.
" An important approach to, and extension of, the work of Stieltjes to the
whole real axis (— @, ©) was achieved by H. Hamburger (1920, 1921). This
extension is by no means trivial. The consideration of negative values of z
introduces new factors in the situation. Hamburger makes extensive use of
Helly’s theorem of choice. He fully discusses the convergence in the complex
plane of both the associated and the corresponding (if it exists) continued
fractions. He shows that a necessary and sufficient condition for the existence
of & solution of the Moment-Problem (7) is the positiveness of all determinants
A, in (4), and also gives criteria for the Moment-Problem (7) to be determined
or indeterminate. A curious fact is revealed, namely, that the Moment-
Problem (7) may be indeterminate while the corresponding Stieltjes Moment-
Problem (1), with the same ux , is determined. :

R. Nevanlinna (1922) makes use of the modern theory of functions and
exhibits the solutions of the Moment-Problem (7) and their properties in terms
of the functions '

1‘ I(z;¥) = M ,  zcomplex.
wZ2 — Y

To him is due the important notion of “extremal solutions”. !

About the same time (1921, 1922, 1923) M. Riesz solved the Moment-Problem
(7) on the basis of “quasi-orthogonal polynomials”, i.e. linear combinations
Anwn(z) + Anawna(z). He also showed the close connection between the
Problem of Moments and the so-called “closure property”’ (Parseval Formula)
for the orthogonal polynomials wa(2). PR ,
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Carleman (1923, 1926) shows the connection between the Problem of Moments
(7) and the theories of quasi-analytic functions and of quadratic forms in infi-
nitelv many variables (through the medium of the asymptotic series bR R il
To him is due the most general criterion, so far known, for the Moment-Preblem
to be determined. '

Hausdorff (1923) gives criteria for the Moment-Problem (7) to possess a
(necessarily unique) solution in & finite interval, that is, when ¥(z) in (7) is
required to remain constant outside a given finite interval. An effective con-
struction of the solution is given and criteria are derived for the solution to
have specitied properties—continuity, differentiability, etc.

The interest in the Problem of Moments remains strong up to the present day.
Among the most important contributions we may mention the work of Achyeser.
and Krein (1934). They have generalized the work of Markoff, making use of
the tools of the theory of quadratic forms; they also extended the theory to the
“trigonometric Moment-Problem” ‘ '

2r
(8) j; e" dY(z) = pn, n=2012--.

Compare, in this connection, the work of S. Verblunsky (1932).

Carleman, and later, Stone developed a rather complete treatment of the
Moment-Problem on the basis of the theory of Jacobi quadratic forms and sin--
gular integral equations and operators in Hilbert space. Finally, Haviland
and Cramér extended M. Riesz’ theory to the case of several dimensions.

Various generalizations have been made to the eases where the set of functions
{z"} is replaced by a more general set {¢a(2)}, or the integrals by more general
linear operators in abstract spaces. These generalizations, however, will not
be considered in the present monograph.

The discussion in the first two chapters follows the work of M. Riesz and
R. Nevanlinna, in chapter IIT that of Markoff, Achyeser and Krein, and Haus-
dorff. -

We shall now state explicitly, but mostly without proof, some fundamental
facts which will be used in various places in the following chapters.

2. Distribution functions. Let R be a k-dimensional Euclidean space. A
function ®(e) of sets e in Ry 1s called a distribution set-function if it is non-negative,
defined (and finite) over the family of all Borel sets in R, and is completely
additive: '

_Z;‘I>(e.-)=<1>(zle¢), ee; =0, if 1 5% ],

The spectrum S(®) of a distribution set-function ®(e) is defined as the set of all
points z € R , such that &(@) > 0 for every open set @ containing z. ;

The point spectrum of @ is the set of all points z such that ®((z)) > 0.

By an interval I C 9 we mean the set of points £ = (1, T2, **° zi) whoss
coordinates satisfy conditions a; < z: = bi, t = 1,2, -0,k with obvious
modifications in the case of an open or closed interval.

SRRy
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An interval I is an interval of continudty of the distribution set-function %
(or more generally, for an additive finction (1) defined over all intervals) if,
~on introducing

I3 a;=1=5<x;§b;;|=a, i=1,2,_-~-,k,

v

we have , :
q»(I*) — &), a8 §—0.

Two distribution set-functions are said to be substantially equal if they have
the same intervals of continuity and their values coincide over all such intervals.
Let ¥(I) be a non-negative set-function defined (and ﬁmte) over all intervals
I in R and satlsfylng the condltxon

" 3

v(l) < Z\Il(Ia), whenever I = ZI,, II; =0 for i =~ j.
fmm] = i
It is always possible to extend ¥(I) to a distribution set—functxon ®(e) defined at g
least for all Borel sets having the same mterva,ls of continuity as \Il(I ), and coin-
ciding with ¥(I) for such intervals.
A necessary and sufficient condition that two dlstnbutlon set—functlons

@ and &: be substantially equal is that L §103) ddh = L -J(t) d®, for any continuous
1 k

function f(¢) which vanishes for all sufficiently large values of | ¢|.

In the one-dimensional case a distribution set-function ®(e) generates a point-
function :p(t), which may be defined, for instance, by setting ¥(t) = $(,) + C,
where I, is the infinite interval ~ o < z S ¢, and C is an arbitrary constant.
This point function is increasing and bounded in (— =, =) and is determined
uniquely at all its points of continuity, up to an addltlona.l constant. Con-
versely, every point fupction which is increasing and bounded generates a d1s~
tribution set-finction which is determined substantially uniquely.

. For this reason any bounded i mcrea,smg pomtf-funct.lon may be called sunply
a distribution function.

Two distribution functions are said to be substantmlly equal if they have the
same points of continuity and if their values at common points of continuity
differ only by a constant. A function ¥(¢) which is increasing and bounded in a
finite closed interval [a, b] can be extended over the interval (— o, «) by
setting ¥(f) = ¥(a), t < a, y(@) = ¢¥(b), ¢t > b. It then becomes a dxstnbutlon
function. Two. functions ¥,(t), ys(f) which are increasing and bounded over a
finite closed interval [a, b] are said to be substantially equal if they have the
same interior points of continuity and if their values at these peints, and also
at the end-points ¢ = a, ¢ = b, differ by a constant. Analogous considerations
hold, of course, in the general k-dimensional case. : :

For proofs we refer to [Bochner, 1; Haviland, 2].

3. Theorems of Helly." A sequence of additive functmns of intervals {¥,(I)}
is said to converge substantjally to a function of intervals ¥(I) if lim ‘I',.(I ) ="¥()

for all (finite) intervals of continuity of .
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“First TueoreM or HEeLLy”. Giwen a sequence {¥.(I)} of mon-negative
additive and uniformly bounded funciions of intervals, then there exists a subse-
quence {¥, (1)} and a disiribution function ® fo which this subsequence converges .
substaniially. Furthermore, if the sequence {¥.} itself does not converge sub-
stantially fo ®, then there exists another subsequence {W,..(I)} converging sub- -
stantially to another distribution function & which is not substantially equal to ®.

“Sgconp TurorREM oF HELLY”. Given a sequence {¥,(I)} of non-negative
dddstive and uniformly bounded functions of intervals, which converges substan-
tially to'a dzstrzbutwn Sfunction ®. Then

tim [, &) a%a = [ 0 dp

for any function f(t) continuous in R and such that, as Iy T R, f fdv, —
, % | X
[ . J(©)adv, uni'fokmly m n.
& 3

In the one-dimensional case this theorem may be easily restated in terms of
sequences of uniformly bounded increasing point-functions, instead of funetlons
of mtervals For the proof see [Bochner, 1]. ‘

4 Extension theorem for non-negative functionals. Let I be a linear
manifold* of real-valued functions x(t) defined on any abstract space Q, ¢t ¢ Q.
Let My, be a linear sub-manifold of M and let fo(z) be a (Q) non-negative additive

- and homogeneous functional defined on My , that is ‘

Jo(zs + x2) = folz1) + fo(x2), Z1, 22 e Mo,
folex) = of (z), ey, |
Jo(z) = 0, whenever z(f) = 0 forall tef C Q>

This functional fo(x) can be extended to an additive, homogeneous and (D) non-
negative functional f(x) defined on the whole manifold I so that f (x) coincides with
Jo(x) on My .

Assume My < M and y e P — PY. Consider the linear manifold P
determined by Mo and y; . The elements 2, of M, admit of a unique representa-
tion z, = o + ty1, where x, is any element of D% and ¢is any real number. Intro-
duce the functional f(z,) defined on I, by

P} = Fize +0) = folwe) &t} . #y = P

It is clear that this functional is additive and homogeneous, and that it coincides
with fo(z) when x ¢ Dt . It remains to determine 7; so that f will be (%) non-
negative. Take any 2, such that 2 — 1 = 0 on Q. Then the condition
f(xo — 1) = O implies fo(zs) — 1 = 0. Hence, on setting M = inf fo(wo), if

* That is, a set of functxons z(t) which contains cz(t), z(t) + y(t), whenever z(t), y(®)
belong to the set, and ¢ is a real constant. '
** % is any given set in Q; in particular, 8o may coincide with Q.
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i

there exist elements 7o = ¥, on @ and M = o in the opposite case, we have
r < M. In the same way, on setting m = sup fo(%o), if there exist elements’
zo < y1on b, and m = — o in the opposite case, we find m = 71 .

Retracing our steps we readily find that if we take for r, = f (1) any number
satisfying the condition m < r; = M, the functional f (;) defined above will be
(%) non-negative. Thus fo(z) is extended to the linear manifold 9 . The
extension to the whole linear manifold 9% can now be performed by the method
of transfinite induction.

The proof above proceeds along the same lines as a proof by Kantorovich [1].

Compare also Haviland [4, 5].

b. Stieltjes inversion formula. Let y(f) be any fun‘ction of bounded varia-
tion on (— <, ®). The integral I(z) = I(z; ¥) = ?b‘—(‘“t)z i s enpletin
function of z in the upper and in the lower half-planes, its values being conjugate
at two conjugate points. The function ¥(¢) can be expressed in terms of I(2)

" by the following formula:
Mt + 0) + ¢t — 0)] — 3¥(t + 0) + ¥(to — 0)]
= lim — —1— ! It + 1e) — It — 1e)] dt.

«—+0 ML Jig

_ (Cf. Stone, [1]). Thus, ¥(¢) is substantially uniquely determined by I(z; ¥).
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CHAPTER I

A GENERAL THEORY OF THE PROBLEM OF MOMENTS.

1. Let R be a k-dimensional Euclidean space. Let there be given an infinite
multiple sequence of real constants
- Miyig---ik) vjl’j2’;"’j'¢=0) 15 25 20 s

We are interested in finding necessary and sufficient conditions that there shall
exist a k-dimensional distribution function & whose spectrum &(®) is to be con-
tained in a closed set &, , given in advance, and which is a solution of the “prob-
lem of moments” [Haviland, 4, 5] :

(1.1) ;.ql...,-.=j;t{‘ cee 4B, Giy e, ade=0,1,2, .

To abbreviate we call this problem simply the (&) moment problem. We say
that the moment problem is determined if its solution is substantially unique;
otherwise we call it indeterminate.
To simplify we shall discuss only the two-dimensional case, k = 2. There
is no difficulty in extending the results to the case of any number of dimensions.
Let P(u, v) be any polynomial in %, v in %,

P(u,v) = 2, my;u'v’y
7 . A\

where z;, y; are real- or cémplex—valued constants. Introduce the functional
u(P) defined by

p(P) = Z,: i T Y -

In particular,

u(u’) = wij.

TuroreM 1.1. A necessary and sufficient condition that the (So) moment
problem defined by the sequence of moments {ui} shall have a solution is that the
functional u(P) be (&) non-negative, that ts
(1.2) 4(P) = 0, whenever P(u,v) 20 on .

This ﬁheorem is an immediate applieation of the theorem on the extension of

non-negative functionals (Introduction, 4). Let M be the linear manifold of
all single-valued functions y = y(u, v) which admit of an estimate

(1.3) lyu, v)| S AGY + ") + B,
1
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where A, B are non-negative constants and r is a non-negative integer. Let
N be the linear sub-manifold of I, consisting of all polynomials P. It is clear
that all functions n = A" + ") + Barein My .

* Now if our (&) moment-problem has a solution ®, then whenever P 2 0
on &,, we obviously have

WP} = faP(u, o) 4 = Lo P(u, 1) d® = 0.

Thus the condition (1.2) of Theorem 1.1 is necessary. To prove its sufficiency,
suppose (1.2) is satisfied, Then u(P) appears as a homogeneous additive (S)
non-negative functional defined on M. By Introduction, 4, this functional =
can be extended over the whole manifold %, with preservation of all these proper-
ties. In particular, we may define u(y:), where y; is the characteristic function

of any two-dimensional interval I, since clearly gr e I. Thus we obtain a
function ¢(I) = u(y;) of intervals, which possesses the properties

® ¥(I) 2 0,

since y; = 0 and u is non-negative;

(ii) whenever I = Z} I;, LI;=0 for isj, then
| » £
WD = 2 v,

gince y is additive and yr = ‘21 v

@ (1) is bounded,
since v ‘ ' L
¥(I) S ¥(®R) = wlyw) = u(1) = po. '

. The conditions of Introduction, 2, gré thus satisfie{l, and we can construct the
- associated distribution function & which is substantially equal to ¥(I).- This
function @ is & solution of our (&,) moment problem. To prove this we have -

only to establish that
(14) @) = &,
. (1.5) f, u'y’' d® = pij, 4,j=01,2 :--.

To prove (1.4) it suffices to show that (uo , vo) € R — S, implies (uo, o) eR —
S@). Let (o, v0) eR — S, and let I < R — &, be a common interyal of
continuity of ® and ¥ containing (uo , %) in its interior. Since y;, = 0 on &
we may write yz, < 0, ¥1, = 0 on &, whence u(ys,) < 0, u(yr,) = 0, and u(ys,)
= 0. Thus ¢(Is) = plys,) = 0, which implies ®(,) = 0; hence (ur, o) €
N — S@).
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It remains to prove (1.5). Let. ¢, & be two given positive numbers. Let
I, be again a common interval of continuity of <I> and ¢, so large that for-a su1t,-
able choice of r

| u'y’ | < ew” +¢") on R —I.

The integers 7, j, and r will be now fixed. Let 1, I, -- -, I be a finite sequence
of common intervals of continuity of ® and ¢, dis-jQint and such that '

'1.,=11+I,+}-‘--+I,.,

while the oscillation of u»’ on each I, » = 1,2, 3, -+, n is less than ¢ . In
: ea.ch I, select a point (u,, »,) and mtroduce a sunple functlon ‘

u'v' on I' ’ p.= 1, 2) ] nl . . '3
yo(u) ”) &= .

0 elsewhere.
It is clear that
yo(u, v) = g us vy, .

Since

volu, v) — & < u’ < wo(u,v) + & on I,, v=12---/n,
while ) :

— e(u™ + ) < u‘v". < e +v*) on R — I,
we have everywhere in % '
¥o(w, v) — €@’ +0") — a < u'v’ < yolu, v) + e(u” +0") + .
In view of the (&;) non-negativeness of the functional x, we have _
ulyo(u, v) — (™ + v*) - a]l S u'’) S ulyo(u, v) + ew” + v*) + «l,

k(o) — e(laro + moz) — e S pis S pyo) + C(I‘Zr‘.o + wo2r) + €1pioo .

But

p(yo) = E up v w(ys,) = Z uloly(l,) = 21 ui vl &(1,).

If we allow here & — 0 and max | I, | — 0, we see that
fx u'v’d® — e(uaro + posr) S pis S f W d® + e(uano + Hoar).
[ i

On allowing here ¢ — 0 (and I, — R) it readily follows that u'v’ is a.bsolutely
integrable over R with respect to ® and that

pis = f wde, 4,j=0,1,2 -
R

o J
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4 THE PROBLEM OF MOMENTS

2. Theorem 1.1 can be readily applied to derive necessary and sufficient con-
ditions for the existence of solutions of various specialized moment problems
characterized by a special choice of &, .

(a) HaMBURGER MOMENT PROBLEM. Here &, coincides with the axis of
reals. Hence u;; = 0forj 2 1, so that we have a simple sequence of moments

ln = Uno n=01,2
and the problem reduces to that of determmmg a one-dimensional dlst.nbutlon
function ¥(u) such that )
(1.6) = [Cwrdb), n=0,1,2 . -

Thus it suffices to consider polynomials and functions of % alone, and to define
the functional u by

w7 u(Py) = g Wz, Palw) = 2_; Z.

Theorem 1.1 states now that a necessary and sufficient condition for the
existence of a solution of (1.8) is that u(P) = 0, whenever P(u) = 0 for all
real values of u. If we take for P(u) the particular polynomial P(u) =
(xo + @u + + -+ + 2,u"), z; real, we have

b

(1.8) p(P) = ; iy T2 = Qa(Z)
(Hankel quadratic form). Thus @ necessary condition for the existence of a
solution of (1.6) is that the quadratic forms Qa.(z),n = 0,1, 2, - - - , be non-negative.
This condstion is also sufficient.

In fact [P6lya und Szegd, 1, Vol. II, p. 82] any polynomial P(u) = 0 for all |
real u can be represented by v

Pu) = pi(u)’ + pa(u)’,
where p;(u), ps(u) are polynomials with real coefficients, whence
u(P) = u(pl) + u(@}) = 0,

if Qu(z) 20,n=0,1,2, --- . \
Let ¢¥(u) be a solution of (1.8). Since

Q@ = uioh) = [ B0 @,

it is clear that if &(y) is not reducible to a finite set of points, we always have

(1.9) Q(z) = Z Biri X%y > 0, n=012"---,
6 =0 .

provided not all 25, z1, * -+ , Za are zero, which will be assumed in what follows.
From the theory of quadratic forms it is well known that conditions (1.9) are
equivalent to

= | pirs| figmo > 0, n=018 .
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On the othér hand, if there exists a solution y(u) whose spectrum consists
precisely of (k¥ + 1) distinet points (we shall see later [3, Corollary 1.1] that the

moment problem is then determined), &, fa, -, tx41, then it is readily seen
that for each » = k + 1, @.(z) = 0 for a suitable choice of zo, 1, *** , T,
which implies A, = 0,n =k + 1,k + 2, --- , while Ay > 0, ---, A > 0. It

can be proved, conversely, that if these conditions are satisfied, then there
exists a uniquely determined solution of the moment problem with the property
mentioned above [Fischer, 1; Achyeser and Krein, 1, 6].

All these results can be stated in

THEOREM 1.2. In order that a Hamburger moment problem
0
(1.6) = [ rdy, n=01,2-,
©

shall have a solution it is necessary that
(1.10) An=|“l‘+.fl"oi-°g0) n=0v1!2’,""

In order that there exist a solution whose spectrum is not reducible to a finite set of
points it 18 necessary and sufficient that

(1.11) 8> 0, n=0,1,2 .

In order that there exist a solution whose specirum consists of precisely (k + 1)
distinet points it 18 necessary and sufficient that

(1.12) Ao>0,"',Al,>0, Ak+1=Ak+z="'==0.
The moment problem is determined in this case.

(b) STIELTIES MOMENT PROBLEM. In this case &, coincides with the posi-
tive part of the axis of reals, ¥ = 0. As in the preceding case, we have to
coneider only moments . = ug , and only polynomials and functions of a single
variable. The moment problem reduces to

i -£ rdy, n=01,2 -,
and a necessary and sufficient condition for the existence of a solution is that
) .
#(P) = 3 uiz; 2 0,
j=0
whenever

Pu) =z +zu+ -+ 24" 20 for u = 0.

An application of this condition to the two special polynomials (zo + zu 4+ - - -
“+ :c,‘.u")’, u(zo + z1u + - -+ + z.u")’ yields at once

Qu(z) = 3;0 Wiy Zix; = 0,

2
i

0)112:"' ’

”n
QY (z) = Biria 2% 2 0,
1,7=0



