e B0 TS SRR R g,
B CE e P B A e ags

Tam
§=H9

i
Sl

o

i~

3 e g e e e
e T e e e Sl !
R A R et AR DI S

A I e e e e T T T

WILLIAM J. CODY, JR.
Argonne National Laboratory
and

WILLIAM WAITE

Department of Electrical Engineering
University of Colorado

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
Cody, William James
Software manual for the elementary functions.

(Prentice-Hall series in computational mathematics)

Bibliography: p.

1. Functions--Data processing. I. Waite, William
McCastline, joint author. II. Title. III. Series.
QA331.C635 1980 519.5 80-14k11
ISBN 0-13-82206k4-6

Prentice-Hall Series in Computational Mathematics
Cleve Moler, Advisor

© 1980 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 87 6 5 4 3 21

Prentice-Hall International, Inc., Londbn
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To our two Joannes

PREFACE

This manual is intended to provide guidance towards the preparation
and testing of elementary function subroutines for non-vector oriented
digital computers. We believe it will be useful to systems programmers,
teachers, students of numerical analysis, hobbyists and anyone else
concerned or curious about how the elementary functions might be
computed. The functions covered are the usual assortment of algebraic,
trigonometric, and transcendental functions of real argument, including
those required by algebraic languages such as Fortran and Basic. Where
programs are included, they are written in Fortran.

Fortran also influences the terminology and notation used: We
frequently use the symbol + to mean multiplication, wuse ** to represent
exponentiation, and talk about the SQRT program, for example. But the
ideas, algorithms, and programs presented are more widely applicable.
Many of the algorithms and accompanying test programs have been
implemented in Basic and PL/I by the authors and their students, and
some have even been implemented on programmable hand calculators.
Nevertheless, the authors make no warranty of any kind with regard to
the material in this manual. It is the reader's responsibility to
verify that the material is both correct and appropriate for his
intended usage.

A magnetic tape containing the Fortran source code for all of the
test programs, the random number generators and the environmental
inquiry program in this manual are available from either of two sources:

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

(Phone: 312-972-7250)

—ix-

X PREFACE

International Mathematical and Statistical
Libraries, Inc.

Sixth Floor, GNB Building

7500 Bellaire Boulevard

Houston, Texas 77036
(Phone: 713-772-1927)

Information regarding distribution charges and tape formats can be
obtained directly from either source.

Almost the entire text of this manual has been prepared on a
computer. While this process has simplified the writing and proofing of
our work, it has also introduced limitations on the use of mathematical
symbols and notation. Subscripts, for example, had to be inserted by
hand and therefore were avoided wherever possible. We apologize for any
resulting awkwardness in our presentation.

We owe much to W. Kahan and the late Hirondo Kuki who were
especially influential over the years in molding some of the ideas
presented here. We are grateful to Argonne National Laboratory for its
support of this project and to our colleagues there who contributed so
much. We especially thank B. Garbow who patiently read and commented on
several versions of the manuscript, R. Clark and W. Tippie who provided
special graphics programs for typesetting and flow charting, S. Pieper
who developed important enhancements to the text editing program which
facilitated the photo typesetting, and G. Pieper who prepared our
computer text files for typesetting and otherwise assisted editorially.
Finally, we thank the many colleagues and students around the world who
tried various versions of our algorithms and provided useful criticism.

8163669

CONTENTS
PREFACE
1. INTRODUCTION
2. PRELIMINARIES
3. PERFORMANCE TESTING
4. SQRT
a. General Discussion
b. Flow Chart for SQRT(X)
c. Implementation Notes, Non-Decimal
Fixed-Point Machines
d. Implementation Notes, Binary
Floating-Point Machines
e. Implementation Notes, Non-Binary
Floating-Point Machines
f. Testing
5. ALOG/ALOG10
a. General Discussion
b. Flow Chart for ALOG(X)/ALOG10(X)
c. Implementation Notes, Non-Decimal

Fixed-Point Machines

ix

11

17

17
18

19

23

25

28

35

35
37

38

vi

CONTENTS

d. Implementation Notes, Non-Decimal
Floating-Point Machines

e. Implementation Notes, Decimal
Floating-Point Machines

f. Testing

EXP

a. General Discussion

b. Flow Chart for EXP(X)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, Non-Decimal
Floating-Point Machines

e. Implementation Notes, Decimal
Floating-Point Machines

f. Testing

POWER (**)

a. General Discussion

b. Flow Chart for POWER(X,Y)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, Non-Decimal
Floating-Point Machines

e. Implementation Notes, Decimal
Floating-Point Machines

f. Testing

SIN/COS

a. General Discussion

b. Flow Chart for SIN(X)/COS(X)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, All
Floating-Point Machines

e. Testing

42

46

49

60

60
62

63

67

71

75

84

84
88

90

97

106

113

125

125
127

129

134
139

10.

11.

12.

CONTENTS

TAN/COT

a. General Discussion

b. Flow Chart for TAN(X)/COTAN(X)

c. Implementation Notes, Non-Decimal

Fixed-Point Machines

d. Implementation Notes, All
Floating—-Point Machines

e. Testing

ASIN/ACOS

a. General Discussion

b. Flow Chart for ASIN(X)/ACOS(X)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, All
Floating-Point Machines

e. Testing

ATAN/ATAN2

a. General Discussion

b. Flow Chart for ATAN(X)/ATAN2(V,U)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, All
Floating-Point Machines

e. Testing

SINH/COSH

a. General Discussion

b. Flow Chart for SINH(X)/COSH(X)

c. Implementation Notes, Non-Decimal
Fixed-Point Machines

d. Implementation Notes, All
Floating-Point Machines

e. Testing

vii

150

150
152

154

159

164

174

174
176

177

181

185

194

194
196

198

203

207

217

217
220

221

225
229

viii CONTENTS

13. TANH
a. General Discussion
b. Flow Chart for TANH(X)
c. Implementation Notes, Non-Decimal

Fixed-Point Machines
d. Implementation Notes, All
Floating-Point Machines
e. Testing

APPENDIX A. RANDOM NUMBER GENERATORS

APPENDIX B. ENVIRONMENTAL INQUIRY
SUBPROGRAM

REFERENCES

GLOSSARY

239

239
241

242
245
248

256

258

265

267

1. INTRODUCTION

The proliferation of mini- and micro-computers has involved ever
larger numbers of people in the creation of basic software. Subprograms
for the elementary functions are an essential part of such software in a
wide variety of applications. These subprograms are often the basic
building blocks of an application and as such must be efficient and
accurate. The algorithms chosen for them must exploit the hardware of
the particular target computer to achieve these goals.

Many pitfalls await a systems programmer who attempts to implement
basic function routines using information gleaned from a calculus text.
The treatment by Hart and his co-authors [1968] provides some guidance,
but its theoretical orientation makes it difficult for the
non-mathematician to use, and it ignores many algorithmic details
dictated by considerations of computer architecture. This manual is
designed as a "cookbook," containing specific "recipes" for the
preparation of software for the elementary functions and information on
testing procedures. Some material presented here is new, particularly
the coefficients used in some of the algorithms and the testing
material. Many of the techniques suggested for implementing the
algorithms are old enough to be considered folklore by some numerical
analysts, but they are gathered together in one place for the first
time.

Our intent is to make this work useful to as wide an audience as
possible, but especially to systems programmers not familiar with
numerical analysis or numerical programming. To this end we have made
comments in the implementation notes which our numerically oriented
colleagues may find trite, but which our experience indicates the
non-numerically oriented will find useful. The technical discussions
have also been kept simple, with references suggested for those desiring
more detailed discussion.

2 INTRODUCTION CHAP. 1

Chapter 2 of this work discusses the general principles behind the
choice of algorithms and the assumptions made about the computer
hardware and software environments in which these algorithms are to be
implemented. Chapter 3 discusses techniques for testing the accuracy of
elementary function subprograms in general, and for testing in the
environments described in Chapter 2 in particular. Chapters 4 through
13 contain the recommended algorithms. The discussion for each function
includes general comments about the algorithm, a flow chart, detailed
implementation notes for several different machine environments, a
discussion of performance testing, and a Fortran program to provide
minimal testing. Finally, there is a glossary of important concepts and
terms, as well as appendices containing certain Fortran subroutines
required by the test programs.

Each algorithm has been implemented as a parameterized body of
Janus (Haddon and Waite [1978]) text. By setting specific parameters
and processing this text with the general-purpose macro processor STAGE2
(Waite [1973]), a Janus program tailored to a particular machine is
obtained. We have tested the Janus implementations on a number of
machines with various parameter settings to validate the algorithms.
While the results are not always as good as the best individual efforts
achieved by programming in assembly language and choosing algorithms
that exploit specific hardware features of a particular computer, they
do demonstrate that these algorithms often come acceptably close.

2. PRELIMINARIES

For expository purposes we will often classify computers according
to pertinent arithmetic characteristics. Efficient implementation of
our algorithms will then require a detailed knowledge of the particular
arithmetic system being used, where the term arithmetic system refers to
the combination of the hardware or software for the arithmetic
operations and the scheme for representing numbers in the machine.
Because there is a great variation in arithmetic systems, we can discuss
them only in general terms here, but the important details of a specific
arithmetic system can usually be determined from the manual describing
the instruction set for the particular machine.

We assume every computer can perform the four basic arithmetic
operations for integers because this capability is essential for
indexing and addressing. Integer arithmetic is exact with two
exceptions. First, there is a largest integer which can be accommodated
in the representation scheme, placing a practical bound on the magnitude
of integers that can be stored in the machine. If we assume that at
most n-digit integers can be stored, then the product of two such
integers is too large to be stored as an integer. On many machines the
full double-length integer product is developed in the arithmetic
registers, with the least significant n digits of the product stored as
the result and an overflow error indicated if the product exceeds n
digits. Overflow is also possible in addition and subtraction provided
the integers involved are large enough. Unless overflow occurs,
however, the result of adding, subtracting or multiplying two integers
is exact and again an integer.

The second exception to exact integer arithmetic is division. The
exact result of integer division is an integer plus a proper fraction as
a remainder. Similar to multiplication, many machines develop both the
integer and the fraction (appropriately rounded or truncated) in the
arithmetic registers, but the fraction is ignored in storing the result.

-3-

4 PRELIMINARIES CHAP. 2

The possibilities for scientific computation using only integer
arithmetic are limited, primarily because scientific computation is
dominated by non-integer quantities. It is possible but awkward to use
integer arithmetic on such numbers. For example, if the computer uses
decimal integers but data must be represented to hundredths, then
scaling by one hundred gives integer quantities that can be combined by
addition and subtraction without error. However, the product of two
such numbers contains four places after the decimal point and must be
rescaled before being used further. Similarly, unless the dividend is
rescaled before division, the quotient will not be an integer.

Integer arithmetic with an implied scale factor is generically
called fixed-point arithmetic, although we will reserve that term in a
moment to denote a specific scaling. Two extremes of scaling are
possible: no scaling, which implies pure integer arithmetic with the
"decimal point" at the extreme right of the digits, and "total" scaling
with the "decimal point" at the extreme left of the digits. This latter
case, in which the stored number represents a proper fraction, a
quantity less than one in magnitude, is what we will call fixed-point
arithmetic (Ralston [1976]). The main differences that distinguish
fixed-point arithmetic from integer arithmetic are as follows:

a) every stored number is either zero or a proper fraction;

b) in multiplication, the most significant n digits of the double-length
product are retained, not the least significant. Thus overflow is
impossible, but underflow (a result too small, hence
indistinguishable from zero) is possible;

c) the fractional part of the quotient is retained instead of the
integer part, and overflow is signaled if the integer part is
non-zero. Thus overflow occurs in division unless the divisor is
greater in magnitude than the dividend.

Many computers extend the instruction set for integer arithmetic to
accommodate fixed-point arithmetic by adding fractional multiply and
divide instructions. This procedure is not difficult when double-length
integer products and quotients are already available. The add and
subtract operations are identical to the integer operations.

Scientific computation is facilitated by representing numbers in a
pseudo-scientific notation and using fixed-point arithmetic. Thus a
number x is represented as

CHAP. 2 PRELIMINARIES 5

x = f « Brve, 0Sf <1,

where f is the fractional part of the number, B is the base for the
scaling, and e is the exponent. Such a number is stored in two parts,
the fraction and an integer representing the exponent. The base B,
which is 10 in normal scientific notation, 1is usually compatible with
the internal number system for the computer. Thus B will ordinarily be
10 on a decimal computer but will be 2, 4, 8, or 16 on a machine that
works primarily in binary. 1In any case, the value of B is understood
and not explicitly stored.

Multiplication and division in this system are simple, involving
fixed-point multiplication or division of the fractional parts of the
numbers, addition or subtraction of the exponents, and appropriate
prescaling to avoid overflow in division. Addition and subtraction
become complicated, however, requiring appropriate prescaling of the
operands to align them and to avoid overflow.

It is only natural that this scheme should be implemented as a
separate arithmetic system, called a floating-point system, and
supported by the instruction set on many computers. The additional
instructions may appear as hardware instructions, or they may invoke
software subprograms. In either case, the floating-point representation
usually differs slightly from the representation just presented. In
particular, we can think of a number x as being represented in
normalized form by

x = 1f « Bere, 1/B S <1,

unless x = 0, in which case f = 0 and the value of e varies with the
implementat ‘on. Normalization refers to the lower bound on £, which is
now called ' e significand. B is the radix of the representation, and e
is the exponent. In order to make our algorithms independent of the
actual representation of x, we state them in terms of the components £,
B, and e. For example, we define functions below which access the f and
e components of a floating-point number. These functions hide details
of the representation; their values depend only upon the values of x and
B and upon the relationship stated above.

The arithmetic performed on floating-point numbers varies from one
machine to another in two characteristics that will affect the
performance of our algorithms. These are the method of fitting

6 PRELIMINARIES CHAP. 2

overlength intermediate results back to working precision, and the
availability of guard digits. In an n-digit floating-point arithmetic
system, more than n digits are frequently required to represent the true
result of an arithmetic operation, but only the n most significant
digits can be retained in the machine. 1In the chop mode of rounding,
any extra digits in the true result are ignored, while in a round mode
the retained significand is rounded up or down, depending 1in various
ways upon the magnitude of the digits to be discarded.

Often at an intermediate stage of an arithmetic operation the
significand of the result requires a renormalization shift of one or
more digit positions to the left to compensate for loss of leading
digits. If the arithmetic operations generate only the first n digits
of the intermediate result, counting possible leading zeros, then there
are no extra digits to shift into the low-order positions during
renormalization, and we say there are no guard digits. However, if
extra digits are generated and participate in renormalization shifts,
thus protecting the low-order positions, we say there are guard digits.
Some arithmetic operations on a machine may have guard digits, while
others on the same machine may not. Lack of guard digits for
addition/subtraction may cause inaccuracies when subtracting numbers
slightly less than an integer power of the radix from numbers slightly
larger than that power of the radix, while lack of guard digits for
multiplication may mean that 1.0 + x # x.

We can now distinguish several broad classes of machines. We will
always assume the existence of some form of floating-point arithmetic.
We will also assume that the radix B is either 10 or a small integral
power of 2, i.e., B is 2, 4, 8, 10 or 16. Thus we will classify
machines as binary (B = 2), decimal (B = 10), non-decimal (B # 10), etc.
We can also distinguish between fixed-point and floating-point machines
by classifying a machine as fixed-point whenever its floating-point
operations are extremely slow in comparison to its fixed-point
operations. Typically, the floating-point instructions are implemented
by software in this case. To be useful, we further assume that a
fixed-point machine is a non-decimal machine and that the number of bits
in a fixed-point (fractional) number is at least as great as the number
of bits in the floating-point significand. In certain explicitly noted
cases we will assume that there are more bits in the fixed-point
representation than in the floating-point significand (e.g., see the
implementation notes for SQRT).

CHAP. 2 PRELIMINARIES 7

On non-decimal floating-point machines we will assume that, say, b
bits are available for the representation of the significand. If B = 2,
normalization requires that 1/2 £ £ < 1 unless f = 0, and the left-most
bit of £ is 1. Thus all b bits are potentially significant. If B = 4,
however, it is possible that 1/4 £ £ < 1/2 so that the left-most bit of
fis 0, in which case only b-1 of the available bits are potentially
significant. Similarly, if B = 16, there may be as many as three
leading zero bits and thus only b-3 potentially significant bits in f.
This phenomenon of loss of potentially significant bits in the
representation of £ for B = 4, 8 or 16, which is due entirely to the
accidental magnitude of x, is termed wobbling precision. As an example
of its impact, in hexadecimal arithmetic (B = 16) the significand of the
constant 2/pi contains no leading zero bits while that for the constant
pi/2 contains three leading zero bits. Thus division by 2/pi is
potentially one decimal place more accurate than multiplication by pi/2
in this system.

A more subtle form of wobbling precision is present in all
floating-point arithmetic systems. Consider two machine numbers
X = (l+eps) *+ B++(n) and Y = (l-eps) * B++(n), vwhere eps is a small
positive quantity. The exponent in the floating-point representation of
X is one greater than the exponent in the representation of Y, even
though X and Y are almost equal. If u represents one unit in the last
digit of the significand of X and v represents one unit in the last
digit of the significand of Y, then for all practical purposes

(u/X) = B+(v/Y),

and u is a larger fraction of X than v is of Y. This has implications
when we discuss relative error in the next chapter.

The algorithms presented in Chapters 4 through 13 are each
accompanied by implementation notes for specific broad classes of
machines. These notes describe details of the implementation consistent
with the characteristics of the target arithmetic systems. The notes
for fixed-point machines, for example, incorporate proper scaling (even
of the given coefficients) to avoid fixed-point overflow and to maintain
maximum precision in the computed result. Similarly, computations are
organized to minimize the effects of wobbling precision on machines
where that can be important. We have tried to indicate why some of the
suggestions are made, but we have not tried to provide background for
every suggestion because to do so would turn our "cookbook" of "recipes"
into a ponderous text on practical numerical analysis.

