Problem Solving in
Including Breac
& Laboratorie

~ Angela B. Shiflet

N

AR et - oA

¥ st

s

o P
-




Problem Solving in C
Including Breadth
and Laboratories

with contributions tfrom
Robert Martin

WEST PUBLISHING COMPANY

Minneapolis / St. Paul New York Los Angeles San Francisco



PRODUCTION CREDITS

Copyediting: Margaret C. Monahan
Design: John Rokusek
Composition: Carlisle Communications
Cover Image: FPG International Corp.

Photo Credits: 2, Telegraph Colour Library/FPG International Corp.; 7 (top), Vannucci Foto-Services/FPG Interna-
tional Corp.; 7 (bottom), Victor Scocozza/FPG International Corp.; 12 (left & right), Courtesy of International
Business Machines Corporation; 15 (top), ISU Photo Service; 15 (bottom), Courtesy of International Business
Machines Corporation; 16 (top), Courtesy of International Business Machines Corporation; 16 (bottom), Historical
Pictures/Stock Montage Inc.; 19, Courtesy of International Business Machines Corporation; 21, AT&T Archives;
30, UPI/Bettmann; 43 (top), Freelance Photographer’s Guild/FPG International Corp.; 43 (bottom left), Universal
Pictures Shooting Star International; 43 (bottom right), S.S. Shooting Star; 58, UPI/Bettmann; 80, Photo courtesy of
The Jet Propulsion Laboratory; 180, Historical Pictures/Stock Montage; 342, Ken Sherman/Phototake NYC;
399, Historical Pictures/Stock Montage Inc.; 425, Courtesy James E. Stoots, Jr., Lawrence Livermore National
Laboratory. Run by The University of California for the Department of Energy. Printed with Permission of Cray
Research, Inc.; 482, Courtesy of International Business Machines Corporation; 506 Eric Kamp/Phototake NYC;
608, UPI/Bettmann; 680, Michael Freeman/Phototake NYC; 730, Courtesy of International Business Machines
Corporation; 909, Courtesy of James E. Stoots, Lawrence Livermore National Laboratories.

WEST’'S COMMITMENT TO THE ENVIRONMENT

In 1906, West Publishing Company began recycling materials left over from the production of books. This began a
tradition of efficient and responsible use of resources. Today, up to 95 percent of our legal books and 70 percent of our
college and school texts are printed on recycled, acid-free stock. West also recycles nearly 22 million pounds of scrap
paper annually—the equivalent of 181,717 trees. Since the 1960s, West has devised ways to capture and recycle waste
inks, solvents, oils, and vapors created in the printing process. We also recycle plastics of all kinds, wood, glass,
corrugated cardboard, and batteries, and have eliminated the use of Styrofoam book packaging. We at West are proud
of the longevity and the scope of our commitment to the environment.

Production, Prepress, Printing and Binding by West Publishing Company.

@ TEXT IS PRINTED ON 10% POST CONSUMER RECYCLED PAPER @ FF"NTED| '\"l'Tz

British Library Cataloguing-in-Publication Data. A catalogue
record for this book is available from the British Library.

COPYRIGHT © 1995 By WEST PUBLISHING COMPANY
610 Opperman Drive
P.O. Box 64526
St. Paul, MN 55164-0526

All rights reserved

Printed in the United States of America

02 01 00 99 98 97 96 95 876543210
Library of Congress Cataloging-in-Publication Data

Shiflet, Angela B.
Problem solving in C including breadth and laboratories / Angela
B. Shiflet.
p. cm.
Includes index.
ISBN 0-314-04554-6 (soft)
1. C (Computer program language) 2. Problem solving--Data
processing. L. Title.
QA76.73.C155474 1995
005.13'3--dc20 94-37379
CIP



Dedicated to my husband,
George,
and my parents,
Isabell and Carroll Buzzett



Preface

Problem Solving in C, Including Breadth and Laboratories introduces the beginning
computer science student to the analysis, design, implementation, testing, and
debugging of programs using ANSI C and to the breadth and richness of the computer
science discipline. The text has a top-down approach to programming and presents
material in a clear, visual manner with ample use of examples and figures. Instructors
can tailor their courses in a variety of ways using this flexible text.

The student is introduced to functions in Chapter 1 and the if and switch statements
in Chapter 3. This early coverage allows programs with some ‘“meat” to be introduced
fairly early in the term. Moreover, the separation of the discussions of integers
(Chapter 2), floating point numbers (Chapter 4), and characters (Chapter 7) allows the
student to focus on fewer concepts at a time. This organization holds the complexity to
a minimum. The typical treatment of including all types in one chapter is like watering
a lawn. After a while, the water simply runs off and is wasted. This text’s organization
allows maximum absorption of the material and concepts. The early presentation of
functions and the gradual introduction of data types and syntax allow programming
principles and problem solving to evolve as the language constructs are developed.
The text emphasizes problem solving throughout, with several sections focusing on
this topic. Moreover, a clear, straight-forward presentation of all topics is included,
with good separation between each.

Each chapter concludes with a laboratory section that is truly integrated with the
topics in the text. The laboratories give a wonderful hands-on introduction to many
features of problem solving with C. Students can work through one or all laboratory
exercises in a self-paced fashion or in a closed laboratory environment. Each
laboratory moves through the chapter concepts, easing a student into writing and
debugging programs. For example, the laboratory for Chapter 3 teaches the student
how to write programs with stubs. The student uses a program from the laboratory
disk, which is simply a program with a set of stub functions. The laboratory gives the
student directions for fleshing out and then testing the functions—one function at a
time—exactly as it would be done in the real world. When the laboratory is complete,
the student has a program that he or she has put together using stubs. Such a laboratory
builds programming confidence. The laboratory breaks the work into simple tasks that
ensure student success. Hands-on computer work makes a student more confident and
adventurous with a language. Program templates in several laboratories promote good
design. Moreover, experimentation is encouraged, and several laboratories in later
chapters (Chapters 10, 11, 14, and 15) have a teamwork component. (The Instructor’s
Manual has suggestions for individual assignments as alternatives to the team
assignments.) Most laboratories have several exercises with multiple parts. Thus, to
meet individual time requirements and needs, an instructor can assign one or all these
exercises. Programming segments and data files to accompany the laboratories are on
a disk included with the text. The instructor’s disk contains answers to laboratory

exercises.
xxi



PREFACE

A professor can cover all or some of a variety of breadth sections. This material
presents a broad range of topics from the discipline of computer science. For example,
breadth material includes such topics as the object-oriented paradigm, intellectual
property, invention of the first computers, logic, color in computer graphics, machine
and assembler languages, external storage, formal grammars, memory, and databases.
The text disk includes the source code for a CPU simulator program, which executes
the example machine language of Section 12.7. A computer graphics package on the
disk accompanies Section 11.7. The package contains files of device-dependent and
independent routines and device drivers (files of device-dependent routines) for Turbo
C and Think C. Moreover, an outline of a generic driver can be used to develop drivers
for other systems. The Learning Features section below contains a complete list of the
26 breadth sections. These breadth sections enhance the subject material, help place
topics in perspective, and give students a preview of the discipline of computer
science. Students like to see the relevance of the subject and what is ahead for them,
and these sections give a good taste of the future.

The style of writing in the breadth material, laboratories, and text material is clear,
direct, and readable. Students love examples, and there are many in the text. Large
“case studies,” as well as shorter examples, are developed in a top-down fashion and
described with structure charts, pseudocode, and pre- and postconditions. Concrete
examples make abstract concepts come alive.

Numerous figures accompany the examples and explanations. These figures help
today’s visually oriented students to “see”” what happens inside the computer as each
instruction executes. A number of figures show the movement of data and the effects
of certain instructions on storage locations. For example, Figure 2.15 of Section 2.9
follows each change in memory with each line of the program. Color highlights
changes in the figures and important segments of code. This visual orientation of the
code and figures is even more important as students move to more abstract ideas.

Figures and examples help to explain the material, but students learn by doing.
Each section has a number of exercises that correlate directly to the material. Answers
to problems with numbers in color are located in Appendix J. Some exercises—such as
those related to searching and sorting—have the students perform the task by hand
before coding it. This kind of drill makes abstract concepts more concrete. The
exercises are complete and thorough and have a good mix of easy and challenging
questions. The text also includes questions from Graduate Record Computer Science
Examinations. The Instructor’s Manual contains answers to the remaining exercises.
The C code in the text, the manual, and the disk has been computer tested.

Besides exercises, most sections contain programming projects, which range in
difficulty and topics. These projects provide an additional source of applications. Some
projects involve revising earlier projects, and several projects are from the Program-
ming Contest sponsored by Fairleigh Dickinson University.

Along with programming projects and exercises, numerous features help students
concentrate on important concepts. Each chapter begins with an introduction and list
of goals. Programming and debugging hints at the end of each chapter cover such
topics as walkthrough technique, clarity of user interface, debugging techniques, some
errors C compilers do not flag, and mistaken operator symbols. Appendix H contains
a summary of the UNIX dbx, Turbo C, and Think C debuggers.

The closing material of each chapter contains key terms, a summary, and review
questions. The list of key terms includes page numbers, which make this feature useful
for reviewing. The chapter summary helps to focus the reader on important points.
Review questions and answers are a tremendous study aid.



PREFACE XX

Appendices include an ASCII table, keywords, operator precedence, conversion
specifications, summary of file I/O, random number generators, contents of text disk,
debugging on different systems, a Glossary, answers to selected exercises, and answers
to review questions.

Learning Features

Breadth
Material

At least one section in each chapter covers the breadth of computer science. These
topics mesh with the chapter’s material. The professor can cover all, some, or none of
these topics. As the following list reveals, the 26 breadth sections complement the
chapters in which they occur.

1 The Fundamentals of Computer Science

10

11

12

13

1.2 The Discipline of Computer Science
1.4 Invention of the First Computers
1.6 The History of C

Integer Variables, Expressions, and Functions
2.4 Storage of Integers in the Computer
2.5 Integer Arithmetic in the Computer

Making Decisions

3.5 Logic

Additional Numeric Types

4.2 Storage of Floating Point Numbers
Looping

5.6 Computer Time

5.7 Truncation Error in Loops

Counter-Controlled Loops
6.3 A Technique of Numerical Computing
6.4 Intellectual Property

Characters

7.4 Octal and Hexadecimal Number Systems
Arrays

8.6 Color in Computer Graphics

Pointers

9.2 Memory

Strings and String Functions
10.7 Software Life Cycle for Large Systems

Structures and User-Defined Types
11.3 Databases
11.7 A Computer Graphics Package (accompanying software on text disk)

Levels of Programming Abstraction

12.4 Some Operating System Features

12.5 The Object-Oriented Paradigm

12.6 C++: Object-Oriented Programming

12.7 Machine and Assembler Languages (accompanying software on text disk)

Recursion
13.3 Formal Grammars



xXxiv

Laboratories

Example
Operations
and
Applications

Numerous
Diagrams
Highlighted
with Color

Section
Exercises

Answers to
Exercises

PREFACE

14 Input/Output and Files
14.2 Secondary Storage

15 Binary Operations
15.2 Logic Gates
15.3 Logic Circuits

16 Data Structures
16.4 Run-Time Stack during Program Execution

Each chapter has a laboratory module with accompanying code on a disk. Some
laboratories involve experimental methods. Others explore alternative implementa-
tions. All reinforce the material in the text. For example, the laboratory in the chapter
on recursion has the student perform an experiment to compare the efficiency of the
three summation algorithms, one nonrecursive and two recursive solutions. The
following four laboratories employ the team approach:

Chapter 10 Develop a command-driven, line-oriented text editor
Chapter 11 Develop a stock portfolio program

Chapter 14 Maintain a program

Chapter 15 Formulate external documentation

The Instructor’s Manual suggests variations for instructors who prefer individual to
team assignments. Moreover, the instructor can use a laboratory in a scheduled, super-
vised environment or can assign parts of the laboratory for independent exploration by
the student.

The text is example-driven. Most sections start with careful detailed discussions and
simple examples to illustrate each new concept and end with a longer example
illustrating analysis, design, and implementation. The level slowly increases as the
reader progresses through the text. The organized approach to examples—particularly
with accompanying diagrams—aids understanding of the subject.

Diagrams help students visualize the actions of operations and algorithms. Color
emphasizes changes. For example, figures in Section 9.1 on The Concept of Pointers
help to illuminate this challenging topic.

Exercises appear at the end of each section, not just at the end of the chapter. These
include short answer problems, diagrams of the execution of segments, design and
coding of functions, applications, and questions from the Graduate Record Computer
Science Examination. The text contains more than 1000 exercises in all.

Answers to some exercises (those with numbers in color) appear in Appendix J which
allows students to check their work for immediate reinforcement. The Instructor’s
Manual contains answers to the remaining exercises. Answers involving C code have
been computer tested.



PREFACE XXV

Programming An average of 15 programming projects are included per chapter. These major

Projects

Historical
Anecdotes

Chapter
Introductions

Chapter
Goals

Program-
ming and
Debugging
Hints

Key Terms

Summary

Chapter
Review
Questions

assignments allow students to design, code, and test. By completing such a project, the
student enhances his or her understanding of the material and abilities in software
development. For ease of assignment, projects are listed at the ends of the sections.

Such anecdotes add interest to the text and make computer science history more real.
For example, Chapter 1’s Programming and Debugging Hints contains the story of
Grace Murray Hopper finding a “bug” in the computer. Moreover, the historical
anecdotes often present material that a computer science major should know about the
history of the discipline.

An introduction at the beginning of each chapter gives an overview of the material in
the chapter.

A list of study goals for the chapter follows the introduction.

Because students spend much time debugging programs, the hints sections are very
useful.

Using the Key Terms section, students can test their knowledge of the important terms
in the chapter. Because page numbers accompany the terms, students can readily check
their answers or consult the text to refresh their memories.

The Summary presents a concise overview of chapter material.

For self-examination, each chapter also contains a list of review questions. Answers
are in Appendix K.

Supplementary Materials

Instructor’s
Manual

Test Bank

An [Instructor’s Manual contains solutions to text exercises, answers to at least one
project per chapter, additional test problems with answers, laboratory code answers,
transparency masters, and suggestions for lectures. The accompanying disk has
examples from the text, data files, laboratory exercises, and their answers. Code in the
Instructor’s Manual and on the disk have been computer tested.

A Test Bank on disk and in the Instructor’s Manual contains test questions and answers
for each chapter.



xXXvi PREFACE

Laboratory
Manual

Text Disk

Overhead
Transparency
Masters

A Laboratory Manual with disk contains the chapter laboratories. The manual has
additional room for a student’s notes and answers.

Included with the text is a disk of laboratory programs, program examples from the
text, and data files in ANSI C.

Transparency masters of key figures, algorithms, and programs are available in the
Instructor’s Manual.

Testing of Code

The source code appearing in this textbook, Instructor’s Manual, and the accompany-
ing diskette was prepared and tested on a Macintosh 840 AV using Symantec’s THINK
C or Symantec C++ compiler, Version 6.0, and on a Mitsuba 80386 MS-DOS PC using
Borland’s C++ compiler, Versions 3.1 and 4.0. Every effort was made to ensure ANSI
compliance and thus provide the student with portable example programs and code
fragments. In all cases, the target execution environment is MS-DOS. These programs
are not designed to be compiled or executed as MS Windows applications. Although
these programs can be compiled using a Windows-based compiler or integrated
development environment—such as Borland’s C++ for Windows—the student must
correctly specify the target environment and run the resulting programs within an
MS-DOS shell.

Acknowledgments

Any project of this magnitude requires the cooperation and support of many people.
The author gratefully acknowledges the many friends, colleagues and students for their
help in the completion of this work. For his ideas and contributions to programming
and problem solving, thanks go to Robert Martin. William Campbell and Jason
Womick have been of enormous help—William through the manuscript preparation,
text disk production, and glossary compilation; Jason in generating solutions for the
exercises. Christine Clawson helped in checking the art and compiling the index.
Helen Thomas gave much proofreading assistance.

At West Publishing, Peter Gordon has been a wonderful editor, giving valuable
direction, imagination and encouragement. Michelle McAnelly, the production editor,
did a fantastic job orchestrating the production phase of the project. Thanks also go to
Peggy Monohan for her accurate copy editing, and to John Rokusek for the attractive
design.

It is impossible to thank adequately John Hinkel, my friend and former colleague at
Lander University. Not only has John been a source of many valuable ideas and
insights, but also he has provided tremendous encouragement and enthusiasm through-
out this project.

I would also like to acknowledge the administration of Wofford College, particu-
larly Dan Maultsby, who provided encouragement and a reduced teaching load to write
this book.



PREFACE xXxvii

Some of the programming problems were contributed by faculty, staff, and students
of the Department of Mathematics and Computer Science at Fairleigh Dickinson
University, Madison New Jersey. These problems were compiled from those used in
the University’s annual programming contest over the last eight years. Particular
thanks go to Dr. Peter Falley, Dr. Phil Laplante, and Ralph Knapp.

GRE test questions were selected from The Graduate Record Examinations
Descriptive Booklet 1991-93, 1991 and Practicing to Take the GRE Computer
Science Test, 2nd Edition, 1992, Educational Testing Service. Reprinted by permission
of Educational Testing Service. Permission to reprint GRE materials does not
constitute review or endorsement by Educational Testing Service of this publication as
a whole or of any other testing information it may contain.

Borland Corp. contributed copies of Turbo C and Symantec Corp. donated
Symantec C++ for use in the project.

I am grateful to the following reviewers who offered many valuable constructive

criticisms:
John Lowther

Michigan Technological University
E. Terry Magel

Kentucky State University
Matthew Dickerson

Middlebury College
Ronald A. Mann

University of Louisville
Bill Stockwell

University of Central Oklahoma
Marguerite K. Summers

Sangamon State University
Sharon Underwood

Livingston University
Sanjay Jain

National University of Singapore

(previously of University of Delaware)
Paul Morneau

Adirondack Community College
Robert Geitz

Oberlin College
Stephen P. Leach

Florida State University
Grace Anne Crowder

Towson State University
Peg Eaton

Plymouth State College
Lorraine Callahan

Northern Arizona University
Jeffrey A. Slomka

Southwest Texas State University
Tim Davis

University of Florida, Gainesville

Margaret Anne Pierce

Georgia Southern University
Ronald J. Gould

Emory University
Neil R. Sorensen

Weber State University
John Carroll

San Diego State University
Nathaniel G. Martin

University of Rochester
Mike Michaelson

Palomar College
Reggie Kwan

Montana College of Mineral Science and

Technology
James M. Frazier

University of North Carolina at Charlotte
Stephen J. Allan

Utah State University
A. M. Fayek

California State University, Chico
Brian Malloy

Clemson University
Richard J. Botting

California State University, San Bernardino
Peter J. Gingo

University of Akron
Dwayne A. McCalister

California State University, Fresno
Marty J. Wolf

Mankato State University
Susan M. Simons

Memphis State University

My husband, George W. Shiflet, Jr., has encouraged me throughout this project and
has done so much to make it possible for me to have the time to write. George and my
parents, Isabell and Carroll Buzzett, have given me boundless love and support. It is to
these three wonderful people that I dedicate this book.



Contents

—

o 1 The Fundamentals of Computer Science, 1

Introduction, 1

1.1 Solving Problems with the Computer, 2
An Overview of Problem Solving, 3
Analyzing the Problem, 4
Designing a Solution, 5
Implementing the Design, 8
Testing the Code, 8
Maintaining the Product, 8
Summary, 8
Section 1.1 Exercises, 9

1.2 Breadth: The Discipline of Computer Science, 9
Theory Paradigm, 10
Abstraction Paradigm, 10
'Design Paradigm, 11

1.3 Model of a Computer System, 11
Input and Output Devices, 11
Secondary Storage, 11
Central Processing Unit, 13
Main Memory, 14
Section 1.3 Exercises, 14

1.4 Breadth: Invention of the First Computers, 15
Section 1.4 Exercises, 17

1.5 Steps to Execution, 17
Editor, 17
Preprocessor, 17
Compiler, 18
Linker, 20
Section 1.5 Exercises, 21

1.6 Breadth: The History of C, 21

1.7 Implementation of the Design, 22
A Program to Display a Message, 23
Comments, 23
Inclusion of stdio.h, 24
main, 25
printf, 25
Semicolon, 26
Style, 26
Section 1.7 Exercises, 28
Section 1.7 Programming Projects, 29



A

—r

CONTENTS

1.8 Top-Down Design and Functions, 30
Using Library Functions, 30
Connecting Functions to Top-Down Design, 31
Function Definition, 33
Calling a Function, 34
Function Prototype, 35
ANSI C Libraries, 36
Section 1.8 Exercises, 39
Section 1.8 Programming Projects, 39
1.9 Breadth: Subject Areas of Computer Science, 40

Algorithms and Data Structures, 41
Architecture, 41
Artificial Intelligence and Robotics, 42
Database and Information Retrieval, 42
Human-Computer Communication, 42
Numerical and Symbolic Computation, 44
Operating Systems, 44
Programming Languages, 44
Software Methodology and Engineering, 45
Social, Ethical, and Professional Issues, 45

Programming and Debugging Hints, 46
Debugging, 46
Walkthrough Technique, 47
Modular Programming, 47

Key Terms, 47

Summary, 48

Review Questions, 50

Laboratory, 51

2 Integer Variables, Expressions, and Functions, 55

Introduction, 55

2.1 Integer Data, 56
Variables, 57
Variable Declaration, 57
Naming of Variables, 59
Section 2.1 Exercises, 60

2.2 The Assignment Statement, 60
Lvalues and Rvalues, 62
Labeled Output, 65
Not an Algebraic Formula, 66
Declaration-Initialization, 67
Section 2.2 Exercises, 67
Section 2.2 Programming Projects, 68
2.3 Integer Arithmetic, 68

Four Binary Operators, 68
Modulus Operator, 71
Printing %, 74

Unary Minus, 75



2.4

2.6

2.7

2.8

CONTENTS

Operator Precedence, 75

Section 2.3 Exercises, 77

Section 2.3 Programming Projects, 78
Breadth: Storage of Integers in the Computer, 79
Binary Representation of Integers, 79
Counting, 81

Decrementing by 1, 82

Range of Unsigned Integers in a Computer, 82
Conversion of a Decimal Integer to Binary, 83
Section 2.4 Exercises, 85

Section 2.4 Programming Projects, 86
Breadth: Integer Arithmetic in the Computer, 86
Signed-Magnitude Representation, 86

Two’s Complement Representation, 87
Addition, 89

Subtraction, 91

Multiplication and Division by Two, 91
Section 2.5 Exercises, 92

Section 2.5 Programming Project, 93
Interactive Programs, 93

Interactive versus Batch Programs, 93
Interactive Programs in C, 94

Section 2.6 Exercises, 96

Section 2.6 Programming Projects, 96
Problem Solving with Integer Functions, 97
Preconditions and Postconditions, 97
Analysis and Design of a Function, 99
Implementation of an Integer Function, 100
Procedures, 101

Arguments and Parameters, 104

Default Type Declarations for Functions, 110
Section 2.7 Exercises, 111

Section 2.7 Programming Projects, 112
Problem Solving Revisited, 112

Analysis, 113

Section 2.8 Exercises, 114

Scope of Variables, 115

Local Variables and Scope, 115

Pass by Value, 115

Local Variables with the Same Name, 118
Global Variables, 120

Section 2.9 Exercises, 123

Programming and Debugging Hints, 125

Clarity of Comments, 125
Clarity of Code, 126
Clarity of User Interface, 126

Key Terms, 127
Summary, 127

Review Questions, 129
Laboratory, 130

vii



—
—
—

—r—
—
e

CONTENTS

3 Making Decisions, 137

Introduction, 137

3.1

3.3

3.4

3.5

3.6

Relational and Logical Operators, 138
Relational Operators, 139

Logical Operators, 140

Boolean Constants, Expressions, and Variables, 142
Operator Precedence, 143

Section 3.1 Exercises, 145

Selection, 145

Flow of Control, 145

The if Statement, 146

The if-else Statement, 148

Section 3.2 Exercises, 155

Section 3.2 Programming Projects, 156
Nesting, 157

Section 3.3 Exercises, 166

Section 3.3 Programming Projects, 167
Multiple-Way Selection, 167

The switch Statement, 167

Branching to the Same Point, 176
Section 3.4 Exercises, 177

Section 3.4 Programming Projects, 179
Breadth: Logic, 180

George Boole and Edmund Berkeley, 180
Basic Components of Logic, 180
Truth Tables, 181

Algebra of Propositions, 183
DeMorgan’s Laws, 184

Section 3.5 Exercises, 184

Testing Schemes, 185

Top-Down Testing, 186

Bottom-Up Testing, 190

Combined Top-Down and Bottom-Up Testing, 191
Section 3.6 Exercises, 192

Programming and Debugging Hints, 192

Decision Control Structures, 192
Testing, 194

Key Terms, 194
Summary, 195

Review Questions, 197
Laboratory, 198

4 Additional Numeric Types, 205

Introduction, 205

4.1

Floating Point Numbers, 206
Distinctions between Integers and Floating Point Numbers, 206
Floating Point Arithmetic, 207



e
e
s

4.2

4.4

CONTENTS

Exponential Notation, 208

Printing Numbers, 209

Type double, 212

Section 4.1 Exercises, 213

Section 4.1 Programming Projects, 213
Breadth: Storage of Floating Point Numbers, 214
Conversion from Base 2 to Base 10, 214
Conversion from Base 10 to Base 2, 214
Multiplication and Division by 2, 216
Storage of Floating Point Numbers, 216
Truncation Error, 218

Section 4.2 Exercises, 220

Coercion, 221

Implicit Coercion, 221

Explicit Coercion, 222

Strong and Weak Typing, 224

Section 4.3 Exercises, 225

Section 4.3 Programming Projects, 226
Additional Integer Types, 226

Different Sizes of Integers, 226
Unsigned Integers, 227

Mixed-Mode Arithmetic, 227

Section 4.4 Exercises, 228

ANSI C Header Files and #define, 229
Numerical Constants, 229

Defining Preprocessor Constants, 231
Absolute Value Function, 232

Square Root Function, 232

Additional Math Library Functions, 233
Section 4.5 Exercises, 242

Section 4.5 Programming Projects, 243

Programming and Debugging Hints, 244

Interfaces between Functions: Global Variables, 244
Preprocessor Constants, 245
Reader’s Understanding of the Interface, 245

Key Terms, 246
Summary, 246
Review Questions, 247
Laboratory, 249

Looping, 257

Introduction, 257

5.1

5.2

Updating Assignment Operators, 258
Increment and Decrement Operators, 259
Pre- and Post-increment and Decrement, 260
Section 5.1 Exercises, 263

Looping with a Pretest, 264

The while Loop, 264

Infinite Loop, 268

ix



X CONTENTS

Nature of the Pretest, 269
Manipulation of Loop Variable, 270
Section 5.2 Exercises, 276
Section 5.2 Programming Project, 277
5.3 Looping with a Posttest, 277
The do-while Loop, 277
Applications, 278
Section 5.3 Exercises, 286
Section 5.3 Programming Projects, 287
5.4 Looping and Interactive Programs, 287
The Sentinel Technique, 287
Random Numbers in Interactive Programs, 290
Seeding the Random Number Generator, 291
Ranges of Random Numbers, 292
Section 5.4 Exercises, 300
Section 5.4 Programming Projects, 301
5.5 Structured Programming, 302
5.6 Breadth: Computer Time, 303
Clock Cycle, 304
Clock Frequency, 305
Section 5.6 Exercises, 306
5.7 Breadth: Truncation Error in Loops, 307
Section 5.7 Exercises, 309
Programming and Debugging Hints, 310
Updating Assignment Operators, 310
Assignment and Relational Equals Operators, 311
Key Terms, 312
Summary, 312
Review Questions, 313
Laboratory, 314

= 6 Counter-Controlled Loops, 317

Introduction, 317
6.1 The for Loop, 318

Loop Choice, 320

Counting Down, 320

Tables, 321

Section 6.1 Exercises, 325

Section 6.1 Programming Projects, 326
6.2 Nesting of Loops, 328

Section 6.2 Exercises, 340

Section 6.2 Programming Projects, 341
6.3 Breadth: A Technique of Numerical Computing, 342

Section 6.3 Programming Projects, 348
6.4 Breadth: Intellectual Property, 349

Copyright Law, 349

Patents, 350

The Company Perspective, 351

Section 6.4 Exercises, 352



