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This volume contains some of the papers presented (in one case unfortunately only
in absentia) during the Australian National University Group Theory Program 1989.
The focal point of the Program was the Third International Conference on the Theory
of Groups and Related Topics; all but three of the papers here were in fact given during
that Conference.

Each paper in this volume has been assessed by at least one referee; the editor is
deeply indebted to those who have given so freely of their time.

All authors have declared that their paper is in final form and no similar paper has
been or is being submitted elsewhere.



INTRODUCTION

The Third International Conference on the Theory of Groups and Related Topics
was held at the Australian National University in Canberra from 25 to 29 September,
1989. In many respects it continued the tradition of the earlier conferences held in 1965
and 1973. The total number of participants was 103. While this is less than the 1973
figure, it is pleasing to be able to report that the number of overseas participants was
greater, and their geographical distribution wider, than at either of the earlier confer-
ences. There were in fact 54 overseas participants, and they came from 17 countries:
Canada, People’s Republic of China, France, Federal Republic of Germany, Hungary,
Italy, Japan, Republic of Korea, New Zealand, Pakistan, Philippines, Singapore, Thai-
land, UK, USA, USSR, Zimbabwe.

The conference was more concentrated than its predecessors (one week instead of
two). Nevertheless, the talks ranged widely over the whole field of group theory, paying
somewhat greater attention than before to cognate areas where group theory finds its
applications. There were some 40 talks in all, of which half were invited lectures. The
generally high standard of the talks contributed greatly to the success of the conference.

The majority of the visitors were accommodated in Ursula College, which was
the centre for the social activities. We are greatly indebted to the College authorities
for the friendly, efficient, and tactful way in which they looked after us. Both the
initial reception by the Vice-Chancellor of the Australian National University, Professor
L. Nichol, and the highly successful dinner were held at the College. Other highlights
of the social program were a party hosted by Bernhard and Dorothea Neumann at their
home and an excursion to the Tidbinbilla nature reserve.

Financing a conference in which many participants come from distant countries
inevitably poses difficulties. Apart from the registration fees, three major sources of
support may be identified. First, the conference was officially sponsored by the Interna-
tional Mathematical Union, the Australian Mathematical Society, and the Australian
National University. The considerable financial contribution from these institutions at
an early stage was vital to forward planning. Second, the conference was held in con-
junction with the Australian National University Group Theory Program 1989, whose
other activities included miniconferences on group representations, on computation in
groups, on soluble groups, and on Burnside questions. The Program, which attracted
over 30 overseas visitors as well as a number of Australiah mathematicians, greatly
enhanced the value of the conference by enabling overseas mathematicians to extend

their stay in Australia. Third, the conference is indebted to the many institutions,
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both in Australia and overseas, who by one means or another provided travel and liv-
ing expenses for individual participants. The valuable support of the Universities of
Melbourne, La Trobe, Sydney, and New South Wales should be specially mentioned.
Many people worked behind the scenes to ensure the success of the conference.
My warmest thanks are extended to all of them, particularly to the members of the
Organising and Local Organising Committees and to the Proceedings Editor.
Bernhard Neumann was the driving force behind the first two conferences. Indeed,
Bernhard has always been the personification of mathematics in action. What better
way, then, to celebrate his impending eightieth birthday (on October 15) than by holding
a conference? Members of Bernhard’s immediate family and many members of his
extended family of colleagues and students were present at the conference. Speaker
after speaker paid tribute to his contribution to mathematics and his influence on their
lives. A photographic display featuring his mathematical career was mounted at the
conference dinner and an evening was devoted to reminiscences. We wish Bernhard

many more active and productive years.

G.E. Wall

(Chairman, Organising Committee)
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A LIE APPROACH TO FINITE GROUPS

J.L. ALPERIN

A couple of years ago I received a postal card from Bernhard Neumann bearing
the message, “Happy one-half birthday.” I replied, thanking him, recalling that I had
been in Canberra a few years before on the occasion of his three-quarters birthday, and
I let him know that I had just accepted an invitation to speak at the celebration of
his four-fifths birthday. Now I would like to add that I am looking forward to his first
birthday, in the year 2009.

Group theory is a subject that comes in many different variations: finite groups,
infinite groups, Lie groups, transformation groups, algebraic groups and so on. It cuts
across algebra, analysis and geometry. Nevertheless, all the different types of groups
are closely related, either directly or by analogy. The two oldest kinds of groups, finite
groups (where the subject began) and Lie groups are particularly close. We wish to add

to that relationship here.

1. STRUCTURE OF LIE TYPE GROUPS

The Lie type groups, the classical groups and the other analogs of Lie groups, are
at the heart of finite group theory. Much of their structure is entirely similar with the
structure of Lie groups. We shall examine some of the most basic aspects of the structure
of Lie type groups from this point of view. For the sake of simplicity of exposition, we
shall restrict ourselves to the case of the general linear group G = GL(n, q) over a finite
field with ¢ = p® elements; as is often the case, nothing will be lost in doing this.

The Borel subgroups are the most common and useful of the subgroups. These are
the group B of upper triangular matrices and its conjugates. The parabolic subgroups
are the conjugates of the subgroups which contain B and these are easily described.
Each parabolic containing B is a group of upper block-triangular matrices, that is,
the group of all non-singular matrices which, for a fixed sequence of positive integers
ki,...,k, which sum to n, have square matrices of sizes ky,...,k, along the main
diagonal and are zero on the remaining entries _below this diagonal. Each of these

parabolic subgroups is consequently an extension of a p-group (the block-triangular

Supported in part by the Australian National University and grants from the NSA and NSF.



2 J.L. Alperin

matrices with identity matrices for the square matrices) by a direct product of general
linear groups of dimensions ki,...,k,.

Having examined a bit of the subgroup structure, let us now turn to the geometry
associated with the general linear group. If V is the natural n-dimensional module for
GL(n,q) then the parabolic subgroups are the stabilizers of flags of subspaces of V',
that is, of strictly ordered sequences of non-zero proper subspaces of V. In particular,
B is the stabilizer of a complete flag, that is a sequence Vi,V5,...,V,,_1, where V; has
dimension 7. It is a truly great idea of Tits’ that the uniform way to study the different
geometries of the Lie and Lie type groups, for example, unitary, symplectic or orthogonal
geometries, is to introduce a simplicial complex, that is, a triangulated space, called the
building, on which the group acts. In the case of the general linear group the description
is quite simple. The vertices of this space, that is, the zero-dimensional simplices, are
the non-zero proper subspaces of V. Two vertices are joined by an edge, a one-simplex,
if one of the subspaces is properly contained in the other. Three vertices are joined to
form a triangle, a two-simplex, if one of the subspaces is strictly contained in a second
which in turn is properly contained in the third, that is, the three subspaces form a
flag. We now have an immediate and close connection between the subgroup structure
we have discussed and the geometry: the parabolic subgroups are the stabilizers of the
simplices in the building!

Having discussed subgroup structure and geometry, let us now turn to represen-
tation theory. One of the common types of structures that arise here are the Hecke
algebras. If P is a parabolic subgroup of G, then the coset space G/P is a G-set and
we can form a vector space over a field with this set as basis, so that we get a module for
G. The endomorphism algebra of this module is known as a Hecke algebra and these
algebras play a central role in the representation theory of G. Notice that we have, at
once, a connection with the subgroup structure. The representation theory of groups of
Lie type like G, over an algebraically closed field k of characteristic p, where ¢ = p®, is
extremely analogous with the finite-dimensional representation theory of Lie groups. In
particular, there is a well-developed theory of weights [3]. If S is a simple kG -module
and U is the group of upper triangular matrices with ones on the main diagonal (the
p-subgroup in the description of the way a parabolic subgroup is an extension in the
case of B) then the subspace of S of elements left fixed by U is one-dimensional and
the stabilizer of this subspace is a parabolic subgroup containing B (one of the upper
block-triangular groups). In this way we have attached a one-dimensional module for
a parabolic subgroup to each simple kG -module. It is then true that this defines a
one-to-one correspondence (modulo isomorphism and conjugacy, of course) between the
simple modules and the one-dimensional representations, the weights, of the parabolic

subgroups. Again, the representation theory is closely related to subgroup structure.
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Finally, in this survey of some of the most basic ideas that arise in studying Lie type
groups, we turn to a result which ties together the subgroup structure, the geometry
and the representation theory. Let Cp be the kG-module which has the 0-simplices,
the vertices, of the building as a basis, let C'; be the kG-module similarly constructed
for the 1-simplices, the edges, and so on up to Cy,—2, the module corresponding to the
n — 2 simplices, that is the complete flags on V. Since the building is a simplicial
complex there are boundary maps which are kG-homomorphisms of each C; to Ci_y,
for ¢ positive. Moreover, we can let C_; be the one-dimensional trivial module for G,
with the empty set as a basis element, and define a boundary map, the augmentation,
from Cp to C_; which sends each vertex to the empty set. In this way we can define
a sequence of modules and maps, the augmented chain complex of the building with

coefficients in &, as follows:
Chog = Chz3— - > Ci - Cy—-C_1 =0

The image of each boundary map is contained in the kernel of the next one and the
successive quotients are the (reduced) homology groups of the building with coefficients
in k, a sequence of kG-modules. The theorem of Solomon-Tits [6] states that all these
homology groups are zero, with the one exception of H,_, and this is a simple module,
which is also projective at the same time, and is known as the Steinberg module, one
of the most basic of all the modules. In this way, we have an example of how three
different aspects of the structure of groups of Lie type, subgroup structure, geometry

and representation theory, are all very closely related.

2. LIE STRUCTURE OF FINITE GROUPS

It has long been observed, in the classification work on simple groups and in the
representation theory of arbitrary finite groups, that there are subgroups that arise in
the work that appear analogous with the parabolic subgroups of Lie type groups. In
fact, there are many aspects of Lie type groups that appear in the study of general
finite groups. Our thesis here is that these are not an unrelated set of interesting and
provocative accidents, but evidence of an important unifying principle which should be

taken very seriously and which is easy to enunciate:

If G is an arbitrary finite group and p is any prime divisor of its order, then there
exist interesting and important analogs of all the aspects of the structure of Lie type

groups whose natural characteristic is p.

In particular, to take a random example, siy, let G be the symmetric group g
and p = 3: then there should be analogs of parabolic subgroups, weights and so on. We
shall now illustrate this principle for the ideas we have just discussed in the preceding
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section. We begin by tabulating the results of this part of the paper where we shall
discuss analogs for all these ideas. On the left are the Lie type concepts and on the

right the analogous ideas for arbitrary finite groups.

Structure of Lie type groups Lie structure of finite groups
Borel subgroups Sylow normalizers

Parabolic subgroups p-parabolic subgroups
Buildings Brown complexes

Hecke algebras Centralizer rings

Weights Weights

Steinberg modules Steinberg complexes

The Borel subgroup B is the normalizer of the subgroup U which is, in turn, a
Sylow p-subgroup of GL(n,q). The normalizer of a Sylow p-subgroup is the obvious
analog for an arbitrary group and it is certainly clear that such subgroups play a central
role in group theory, even appearing in a critical way in the most elementary uses of
the Sylow theorems which are taught in first courses in algebra. A subgroup L of an
arbitarary group G is called a p-parabolic if L is the normalizer in G of the largest
normal p-subgroup O,(L) of L; in the Lie type case this property has long been known
to characterize parabolic subgroups, by a theorem and Borel and Tits. The p-parabolic
subgroups occur in many places; for example, the normalizer of a defect group of a
p-block is a p-parabolic subgroup.

Turning to geometry, there is indeed a very good analog of the building for our
arbitrary group G, the Brown complex due to K. Brown [2]. Consider the poset (par-
tially ordered set) S,(G) of all non-identity p-subgroups of G. We define a simplicial
complex |S,(G)| by letting the vertices be these non-identity p-subgroups, joining two
vertices if one of the two subgroups is properly contined in the other, forming a triangle
from three vertices that are a strictly linearly ordered set of three subgroups, and so on
in the same way as we constructed the building but using a different poset, not the poset
of non-zero proper subspaces of a vector space. The connection with buildings is quite
direct: if G is of Lie type and characteristic p then the Brown complex and the building
are of the same homotopy type [4]. (In fact, there is a closer connection: Let |B,(G)]
be the Bouc complex which is the simplicial complex formed from the poset B,(G) of
non-identity p-subgroups @ of G such that N(Q) is a p-parabolic subgroup of G with
Q = O,(N(Q)); |Bp(G)]| is then also of the same homotopy type as the Brown complex
and, if G is of Lie type and characteristic p, is homeomorphic with the building being,
in fact, isomorphic with the first barycentric subdivision of the building). The Brown
complex and related complexes are now of great interest to a number of group theorists

and it is clear that they are basic objects of study in the theory of finite groups.
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Turning to representation theory, the analogs of Hecke algebras are well-known and
precede the introduction of Hecke algebras; they are the centralizer rings of Schur. If G
acts transitively on a set X then the endomorphism ring of the module, formed from
linear combinations of elements of X, is a centralizer ring and is a useful object in
the study of permutation groups and in applications to representation theory. The tie
between these two concepts is so close that it is now customary to call all centralizer rings
by the name Hecke algebras! It is also possible to define the concept of weight for our
arbitrary group G; the concept does not just apply in the specialized Lie situation. A
pair (Q, S) is called (see [1]) a weight of G if @ is a p-subgroup of G and S is a simple
kG-module for N(Q) which is also projective when regarded as a module for N(Q)/Q
(which may be done as ) must act trivially on S since S is simple). (Of course,
changes due to conjugacy or isomorphism are not regarded as changing the weight.)
In the Lie type case these weights correspond naturally with the Lie weights; in fact,
the Steinberg module plays a role in this connection. Moreover, there is a conjectured
relation with simple kG -modules: the number of simple kG -modules equals the number
of weights. This conjecture and its refinements have attracted a great deal of attention
recently and a solution would represent a real breakthrough in representation theory. A
reformulation due to Knorr and Robinson [5] is particularly suggestive since it involves
use of the Brown complex and puts the above weight conjecture and the Alperin-McKay
conjecture, on characters of height zero in a block, in a very similar form.

Finally, we wish to again tie up subgroup structure, geometry and representation
theory in a way analogous to the Solomon-Tits theorem on the Steinberg module. Here,
the decisive result is one of Webb’s [7]. We can form an augmented chain complex
for the Brown complex just as we did for the building. Webb’s result is that this
chain complex of kG-modules is the direct sum of two complexes, one consisting of
just projective modules and the other complex having the property that it is a long
exact sequence which is also split (which is called contractible and is analogous to the
geometric idea). One may assume that the complex consisting of projective modules has
no summand which is a contractible complex and it is then unique up to isomorphism,
by the Krull-Schmidt theorem applied to complexes. If G is of Lie type then the
projective complex just described consists of a complex all of whose modules are zero,
with just one exception, the Steinberg module which appears as the component in one
dimension. For this reason, it is entirely appropriate to call the complex of projective
modules appearing in Webb’s theorem by the name of the Steinberg complex. Webb
has also shown how these results may be used in an extremely effective way to calculate
cohomology of modules, a problem that hitherto seemed much more difficult, so that

these ideas are not only interesting as analogs but they are very useful and basic.



6 J.L. Alperin

3. HOMOLOGY OF THE BROWN COMPLEX

We now wish to apply this Lie principle to show how it leads to new mathematics.
There are a number of topics which would illustrate this but we shall discuss the question
of the nature of the homology of the Brown complex. This should certainly be interesting
if the Brown complex is a good analog of the building. Webb’s theorem also suggests
this topic since the structure of the Steinberg complex is quite unknown. We shall
restrict ourselves to reduced homology with the integers Z as coefficients and write
H,.(Sp(G)) for Ha(|Sp(G)|, Z), so we are really studying the augmented chain complex
for the Brown complex with Z as coefficients in place of k. It would be just as easy to
just deal with k as coefficients but we shall use the coefficients that usually appear in
topology.

A group with a normal p-subgroup has all the homology of its Brown complex zero;
the complex is contractible and the reverse implication is conjectured [4]. In the case
that G is of Lie type and of characteristic p the connection between the building and
the Brown complex again yields that the homology of the Brown complex is non-zero
in exactly one dimension. A theorem of Quillen [4] also gives the same result for a
solvable group G with abelian Sylow p-subgroups and with O,(G) the identity. These
results suggest that there is a paucity of non-zero homology for the Brown complex, but

nothing of the sort is the case as we shall now illustrate with a couple of theorems.

THEOREM 1. If the generalized Fitting subgroup F*(G) is a p'-group and E is a
maximal elementary abelian p-subgroup of G and of order p¢, then He_1(Sp(G)) #0.

The assumption on F*(G) is equivalent with the existence of a normal p’-subgroup
P q p g I

of G which contains its own centralizer.)

THEOREM 2. If p > 3 and E is a maximal elementary abelian p-subgroup of the
symmetric group ¥, and of order p®, then H._1(S,(X,)) #0.

The proofs have a number of ideas in common. One is the use of the Quillen
complex [A,(G)| formed from the poset A,(G) of non-identity elementary abelian p-
subgroups of G which is also of the same homotopy type as the Brown complex and
so has the same homology. Another is the use of a complex which appears to be quite
unrelated. For any group G and a prime p, we form a complex |Cp(G)| on the set
Cp(G) of subgroups of G of order p. The vertices are these subgroups, two are joined
by an edge if they commute elementwise, three form a triangle if they again commute
elementwise and so on. The 1-skeleton of this complex, the graph consisting of the
vertices and edges, is a well-studied graph and occurs in work on the classification of
simple groups and in the construction of the Fischer sporadic simple groups. A general

result is as follows:



