GAUGE FIELD THEORIES AN INTRODUCTION

by

J. LEITE LOPES

AN INTRODUCTION

by

J. LEITE LOPES

Centre de Recherches Nucléaires Université Louis Pasteur, Strasbourg

PERGAMON PRESS

OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT

U.K.

Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England

U.S.A.

Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.

CANADA

Pergamon Press Canada Ltd., Suite 104,

150 Consumers Rd., Willowdale, Ontario M2J 1P9, Canada

AUSTRALIA

Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia

FRANCE

Pergamon Press SARL, 24 rue des Ecoles,

75240 Paris, Cedex 05, France

FEDERAL REPUBLIC
OF GERMANY

Pergamon Press GmbH, 6242 Kronberg-Taunus, Hammerweg 6, Federal Republic of Germany

Copyright © 1981 J Leite Lopes

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First edition 1981

British Library Cataloguing in Publication Data

Lopes, J. Leite Gauge field theories. 1. Gauge fields (Physics) 1. Title 539.7'2 QC793.3.F5 ISBN 0-08-026501-4

In order to make this volume available as economically and as rapidly as possible the author's typescript has been reproduced in its original form. This method unfortunately has its typographical limitations but it is hoped that they in no way distract the reader.

Preface

In the last fifteen years the attempts at a unified description of the fundamental physical interactions by gauge field theories have given rise to exciting developments in particle physics.

In this book, which grew out of lectures I gave in the last few years in several places, at Strasbourg University, at the 1980 XIV Curso Centro Americano de Fisica, held at the University of Panama, at the Federal University of Rio de Janeiro and the Centro Brasileiro de Pesquisas Fisicas, I try to explain in an elementary way the basic notions and principles of gauge theories. In particular, the Salam-Weinberg model of electro-weak interactions is developed in some detail including its verification in the study of neutrino-lepton scattering and the parton model. This model is at present the most successful attempt at a unified theory of physical interactions.

The aim of this book is to give a self-contained introduction to these theories.

The reader will be assumed to know basic quantum mechanics and special relativity together with the elements of group theory needed for these disciplines; a knowledge of the qualitative description of elementary particles and their quantum numbers will also be required, as well as the elements of the Feynman diagrams technique.

The first Chapter contains the basic notions of classical field theory and the all important Noether's theorem. An introduction is also given to solitons and instantons and the topological quantum numbers, subjects which arose from the study of the non-linear field equations in gauge theories and which have been developed in the recent few years.

Besides the study of the electromagnetic and the Yang-Mills gauge

fields, a chapter on the gravitational field is included. We think that this chapter is of interest for two reasons: firstly, it may be suggestive for the graduate students to learn that there are several common features between this and the Yang-Mills field-non-linear equations, similar covariance behaviour of certain quantities such as the gauge field and its source, under the corresponding groups. Secondly, it is precisely the unification of gravitational with strong, electromagnetic and weak interactions, which present the greatest challenge to theoreticians nowadays. It would be stimulating that the young readers acquire a basic knowledge of the situation for each gauge field, gravity included.

Perturbation calculations, renormalization and path-integral quantization are not studied in this book. Two excellent books on this subject which were recently published, one by C. Nash, the other by J.C. Taylor, are indicated in the bibliography; they fully develop the basic ideas and techniques in this domain. The reader is invited to consult excellent reports and review articles mentioned in the bibliography.

A section in Chapter IX deals with very recent speculations on possible lepton and quark structures, for which there is so far no experimental evidence. An introduction to the SU(5) model of grand unification is presented in Chapter X. Problems are given for each chapter and solutions are collected at the end of the book.

I am most grateful to Abdus Salam, Director of the International Centre for Theoretical Physics, for sponsoring my lectures in Panama and to Mario Bunge for his support and encouragement; my best thanks are also due to B. Fernandez and his colleagues of the University of Panama, to R. Lobo, E. Lerner and their colleagues of the Centro Brasileiro de Pesquisas Fisicas and of the University of Rio de Janeiro, respectively for the humanly warm and kind hospitality. The author greatly profited from conversations with J.J. Giambiagi, Ch. Ragiadakos, C.A. Savoy, J.A. Martins Simões and D. Spehler on topics of this book.

I am deeply grateful to the authors and to the Nobel Foundation for their kind permission to reprint the lectures given by the 1979 Nobel Laureates Sheldon L. Glashow, Abdus Salam and Steven Weinberg. I am equally grateful to the Physical Society of Japan and to the author for kindly permitting the reproduction of the Table IX from the article by C. Baltay in the Proceedings of the 19th International Conference on High Energy Physics, 885-903, Tokyo (1978).

Madame Erice North prepared the typescript with great ability and patience, my warmest thanks go to her.

J. LEITE LOPES

Strasbourg, January 1981

Contents

INTRODUCTION	i
Table I - Basic interactions	4
Table II - Observed fermions	4
Table III - Observed bosons	5
Table IV - Quark quantum numbers	5
No. 15. W. C.	6
Table V - Lepton quantum numbers	
Table VI - Basic fermions	7
Table VII - Basic boson fields	7
Table VIII - Quark structure of hadrons	8
Table IX - Questions	8
CHAPTER I : Field equations, conserved tensors and topological	
quantum numbers	13
I. 1 - Free field equations	14
'I. 2 - Non-linear field equations for a single scalar	
field	24
I. 3 - Non-linear vector field equations	27
I. 4 - Field equations and action principle	38
I. 5 - Examples of lagrangeans	39
I. 6 - Noether's conserved tensors	44
I. 7 - Examples of Noether tensors	48
I. 8 - Conserved Noether tensors for specific fields	54
I. 9 - Soliton solutions of classical non-linear field	
equations and topological quantum numbers	62
Problems	00

CHAPTER II : The electromagnetic gauge field	83
II. 1 - Field interactions	84
II. 2 - The electromagnetic field as a gauge field	86
II. 3 - Maxwell's equations and the photon propagator;	
gauge fixing conditions	93
II. 4 - The energy momentum tensor of fields in interaction	
with the electromagnetic field	96
II. 5 - Non-integrable phase factor and the integral formu-	
lation of gauge field theories	98
Problems	106
CHAPTER III : Examples of electrodynamical systems	109
III. 1 - Scalar electrodynamics	110
III. 2 - Proca vector field electrodynamics	111
III. 3 - Spinor field electrodynamics	113
III. 4 - Scalar and Proca electrodynamics: alternative	
formulations	114
Problems	119
CHAPTER IV : The Yang-Mills gauge field	121
IV. 1 - The isospin current	122
IV. 2 - The Yang-Mills isospin gauge-field	128
IV. 3 - The isospin gauge field as a mixture of an abelian	
gauge field and an isovector	132
IV. 4 - Lagrangean of a Yang-Mills isospin gauge field in	
interaction with matter	134
IV. 5 - Field equations and non-linearity of the inter-	
action	141
IV. 6 - Remarks on the covariant derivative	142
IV. 7 - Energy momentum tensor for a Yang-Mills system	143

IV. 8 - Examples of Yang-Mills isospin gauge systems	
of fields	145
IV. 9 - The global SU(3) group	146
IV. 10 - The colour gauge field	150
Problems	153
CHAPTER V. : The gravitational gauge field	157
V. 1 - Introduction	158
V. 2 - Groups of local transformations and covariant	
derivatives	158
V. 3 - Covariant derivatives of tensors in general relati-	
vity : the gravitational gauge field	162
V. 4 - The lagrangean of matter tensor fields in inter-	
action with the gravitational field	167
V. 5 - Einstein's equation of the gravitational field	170
V. 6 - The energy momentum of the gravitational field \dots	175
V. 7 - Gravitational interaction with an electromagnetic	
field	181
V. 8 - The tetrad formalism	182
V. 9 - Dirac's equation and current in general relativity	187
V. 10 - The Dirac Field energy-momentum tensor	193
V. 11 - Gauge fixing conditions	195
Problems	196
CHAPTER VI. : Weak interactions and intermediate vector bosons	199
VI. 1 - Introduction	200
VI. 2 - Charged weak currents	200
VI. 3 - The intermediate vector boson field	205
VI. 4 - High-energy divergences in the Fermi and vector	
boson theories	208
Problems	216

CHAPTER VII: The Higgs mechanism	223
VII. 1 - The notion of spontaneous symmetry break-down \cdots	224
VII. 2 - Goldstone bosons	230
VII. 3 - The Higgs mechanism	235
Problems	240
CHAPTER VIII : The Salam-Weinberg model	241
VIII. 1 - Unification of the electromagnetic and weak inter-	
action theories : the Salam-Weinberg model	242
VIII. 2 - The SU(2) & U(1) gauge invariant lagrangean	246
VIII. 3 - Generation of the electron mass	252
VIII. 4 - The mass of the physical Higgs field	255
VIII. 5 - The massive vector bosons	256
VIII. 6 - The electromagnetic field and the Weinberg	
angle	261
VIII. 7 - The effective Salam-Weinberg lagrangean for	
electrons and neutrinos	264
VIII. 8 - Parameters and physical constants in the Salam-	
Weinberg lepton model	269
VIII. 9 - The neutral lepton currents	271
VIII. 10 - Extension of the model to the other leptons	273
VIII. 11 - Neutrino-lepton scattering and the experimental	
tests of the Salam-Weinberg model	274
VIII. 12 - The Salam-Weinberg model for hadrons ; the GIM	
mechanism ; the quark masses	283
VIII. 13 - The Salam-Weinberg quark currents	289
VIII. 14 - The suppression of the strangeness-changing	
neutral current	296
VIII. 15 - Estimates of the quark masses	299
VIII. 16 - The parton-quark model	300
VIII. 17 - The value of the Weinberg angle for the neutrino-	
nucleon scattering	319
Problems	323

CHAPTER IX : Gauge theory with lepton flavour non-conservation	325
IX. 1 - $SU(2)$ @ $U(1)$ gauge theory with heavy leptons	326
IX. 2 - Speculations on lepton structure	331
Problems	333
CHAPTER X : Attempts at a "grand" unification : the $SU(5)$ model	337
X. 1 - The SU(5) gauge fields and generators	338
X. 2 - Hierarchy of spontaneous broken symmetries ;	
Lepto-quark bosons	350
X. 3 - Concluding remarks	359
Problems	362
Solutions of Problems	365
Reprinted Nobel lectures :	
Steven WEINBERG, Conceptual foundations of the unified theory	
of weak and electromagnetic interactions, Les Prix Nobel 1979	405
Abdus SALAM, Gauge unification of fundamental forces, Les Prix	
Nobel 1979	423
Sheldon Lee GLASHOW, Towards a unified theory : threads in a	
tapestry, Les Prix Nobel 1979	449
REFERENCES	461
INDEX	479

Introduction

1. - You all know that the philosophical dream of physicists has always been to reduce (and thus "explain") the enormous varieties of material bodies and events in nature to configurations of a small number of basic constituents and their interactions -the Greek atoms, the atoms and molecules of the chemistry and physics of the XVII th century, the elementary particles of the last fifty years, the quarks, leptons and fundamental bosons of today.

The ninety two elements of the Mendelejev table were explained in terms of three particles, the electron and the proton and neutron; these, together with the photons, responsible for the electromagnetic interaction among electrons and nuclei, were the primordial objects of the physicists around 1934.

The later discovery of pions, postulated by Yukawa in 1935, to describe the nucleon interactions, and then of muons and neutrinos, of strange particles and ressonances, seemed to suggest that the underlying reality of fundamental particles was perhaps too rich to be possibly reduced to a small number of objects. The number of supposed elementary particles soon became at least as large as the number of elements in the Mendelejev table

2. - On the other hand the idea that physical forces propagate in space with a finite velocity through the action of a field was introduced by Maxwell and Lorentz in electrodynamics. This idea was further developed by Einstein and in his relativistic theory of gravitation -perhaps the most beautiful achievement in theoretical physics up to our days- the unifying power of the description by the field concept was greatly enhanced, the gravitational field being identified with the metric tensor in a Riemannian space-time.

GFT - B

With the development of quantum mechanics and of the principles of quantum field theory, physicists were led to associate a field to each particle. However, the large number of elementary particles which were discovered in the fifties discouraged many physicists in their belief of the unifying rôle of field theory. The efforts developed by Einstein to find a unitary theory of the gravitational and the electromagnetic field, seemed meaningless to quantum and particle physicists since many other fields would have to be taken into account in such a unifying theory. It was mainly in the domain of strong interaction physics that the notion of field seemed useless.

The developments in the last ten years which culminated with the Salam-Weinberg model of gauge fields which unify electromagnetic and weak interactions and, more recently, the discovery of quantum chromodynamics, restored the full theoretical value of field theory. It is believed that the unification which we must seek is rather that of the basic forces of nature, rather than of the bodies and their constituents. The elementary particles are now reduced to leptons and quarks but the number of these admitted basic objects seems to be increasing. Instead, the Salam-Weinberg model opened up a new style and a new aim, in the spirit of the great unification of physical fields as dreamed of by Einstein. Strong interactions are now assumed to be described by massless vector gauge fields associated with the colour degrees of freedom of quarks. And this theory is expected to reproduce the strong interactions between hadrons, although for the moment mathematical difficulties have been preventing an early completion of this program.

Current research actively develops efforts in the sense of a "grand" unification of all the basic interactions of nature, such as the Georgi-Glashow SU(5) model which attempts to unify the strong, weak and electromagnetic interactions.

3. - We know that the elementary particles are classified according to their spin into bosons -particles with integral spin, obeying therefore to the Bose-Einstein statistics- and fermions particles with half-integral spin and which obey the Fermi-Dirac statistics.

I will show you now a table (Table I) which indicates the basic physical interactions between particles. These are in small number: all forces in nature result from the interplay of: 1) gravitational interactions which are created by and act upon all forms of energy and matter; 2) weak interactions, which act between leptons (electrons, muons, tauens and their neutrinos) and also hadrons; 3) electromagnetic interactions, created by and acting upon all particles with a charge, a dipole moment; 4) strong interactions, which act only on heavy particles called hadrons. As we said above, it is today believed that these interactions may be described in a unified way: massless vector fields—the gauge fields—are defined in association with the postulated invariance of the theory under gauge transformation and these fields give rise after a spontaneous break-down of the symmetry, to the fields of the weak and electromagnetic interactions. The strong interactions are assumed to be governed by another gauge theory with unbroken symmetry, the colour SU(3) gauge group, which introduces eight massless gauge fields, the gluons.

TABLE I - Basic interactions

Interactions	strength of coupling constant	Transmitted by	Gauge fi	elds
Gravitation	$\mathcal{G} \frac{m_e^2}{e^2} \sim 0.2 \times 10^{-42}$	spin 2 massless field quantum : graviton	general co transf gauge f	orm
Weak	$G_F = \frac{(m_p c)^2}{\pi^3} \sim 1.01 \times 10^{-5}$	spin 1 massive fields quanta: W ⁺ ,W ⁻ , Z ^O		
Electromagnetic	$\alpha = \frac{e^2}{4\pi\hbar c} \sim \frac{1}{137} \sim 10^{-2}$	spin 1 massless field quantum : photon	gauge fields	defines
Strong	g^2 $4\pi^3c$ 10 for hadromic, matter Momentum transfer dependent $\alpha_{\rm g}({\it p}^2)$ for quark interaction		colour SU(3) gauge fields	24 gauge fields

Supergravity postulates a massless spin 3/2 quantum -the gravitino- in addition to the graviton

TABLE II - Observed fermions

	Display	observed
Leptons	weak and electromagnetic forces	e^- , v_e^- ; μ^- , v_{μ}^- ; τ^- , v_{τ}^- and their antiparticles (spin 1/2)
Baryons	weak, electromagnetic and strong forces	nucleons;hyperons; baryonic resonances (spin 1/2, 3/2,)

TABLE III - Observed bosons (1980)

Photons	
Hadronic Mesons	π, ρ, κ, φ,
	D, ψ, Τ, etc.

TABLE IV - Quark quantum numbers

Flavours	Q	I	I ₃	В	Y	S	С	ь	t(?)
u _a	2/3	1/2	1/2	1/3	1/3	0	0	0	0
da	- 1/3	1/2	- 1/2	1/3	1/3	0	0	0	0
s _a	- 1/3	0	0	1/3	- 2/3	- 1	0	0	0
c _a	2/3	0	0	1/3	- 2/3	0	1	0	0
ta ?	2/3	0	0	1/3	- 2/3	0	0	. 0	1
b _a	- 1/3	0	0	1/3	- 2/3	0	0	- 1	0
:(?)									

Q = charge

B = baryon number

Y = B + S - C + b - t

I = isospin

Y = hypercharge

 $Q = I_3 + \frac{1}{2}(B + S + C +$

I₃ = third component of isospin S = strangeness C = charm

* +b+t)

b = beauty (bottom-ology ; bottomness ?)

t = top-ology (topness ?)

Each quark is assumed to exist in three states which differ among themselves only by a new quantum number, the colour a=1,2,3

TABLE V - Lepton quantum numbers

	^L e	L_{μ}	L_{τ}
V	0	1	
μ-	0	1	
ν _e	1	0	
e	1	0]
$\bar{\nu}_{\mu}$	0	-1	0
μ+	0	-1	
ν̄e	-1	0	
e ⁺	-1	0	
ντ	0	0	1
τ	0	0	1
τ+	0	0	-1
ν̄ _τ	0	0	-1

 L_a : a-onic lepton quantum number