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PREFACE

The mathematician’s work proceeds iin two directions: outwards and
inwards. Mathematical research is constantly seekifg to pursue ‘con-;
sequences of earlier work and to postulate new sorts of entities, seeking
to demonstrate that they have consistent and useful properties. And on
the other hand, part of mathematics consists of introspection, of a process
backwards in the logical sequence, of the study of the nature and the
basis of the subject itself. This inward-looking part is what is normally
called the foundations of mathematics, and it includes study of set theory,
the number systems, (at least some) mathematical logic, and the history
and philosophy of mathematics. This book is not intended to cover all
of these areas comprehensively. It is intended to convey an impression
of what the foundations of mathematics are, and to contain accessible
information about the fundamental conceptual and formal apparatus
that the present-day working mathematician relies upon. (This apt
description is due to G. T. Kneebone.) The concepts directly«nvolved
are: numbers (the various number systems), sets, orderings of sets,
abstract mathematical structures, axiomatic systems, and cardinal and
ordinal numbers. : :

The book presupposes no knowledge of mathematical logic. It does
presuppose a certain amount of experience with mathematical ideas, in
particular the algebra of sets and the beginnings of mathematical analysis
and abstract algebra. Its structure is in many ways a compromise between
what is appropriate for a course text and what is appropriate for a more
readable background text. Different teachers would place different
emphases on the topics here dealt with, and there is no clear logical
sequence amongst the topics. It is intended, therefore, that the chapters
(at least the earlier ones) should have few interdependences. There are
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viii Preface . o

,forward and backward references where appropriate, but these are
generally illustrative rather than essential. Each chapter begins with a
brief summazy which includes an indication of its relationships with the
other chapters. The level of mathematical sophistication does increase
as the book proceeds, but throughout the book there are exercises of a
routine nature as well as more taxing ones. These exercises are an
integral part of the presentation, and they are designed to help the
reader to consolidate the material.

The content is definitely mathematics, not logic or philosophy.
Nevertheless, no book on this sort of subject matter can avoid involve-
ment with philosophical issues. As readers will discover, underlying the
whole of thie presentation is a definite philosophical viewpoint, which
may be summarised in the following remarks. Mathematics is based on

thns and axiom tems for number theory or set theory

I f%ﬁ 0 mor;dﬁnan a measu}. of the agreement that exists (at any
en. 1m amongst mathematicians about these perceptions. Too much
prominence has been given to formal set theory as a foundation for
mathematics and to sets as ‘the’ fundamental mathematical objects.
Mathematics as a whole is not a formal axiomatic system. Mathematics
as practised is not merely the deduction of theorems frofn axioms. Basing
all of mathematics on set theory begs too many questions about the

_ nature and properties of sets. Thus, while axiomatic set theory is treated
in some detail in Chapter 4, it is treated as a part of mathematics, and
not as a basis for it.

Following each chapter there is a list of references for further reading
with some comments on each one. The details of these titles will be
found in the full bibliography at the end of the book. Also provided at
the end of the book are a glossary of symbols and hints and answers to
selected exercises. In the text the symbol » is used to denote the
resumption of the main exposition after it has been broken by a theorem,
example, remark, corollary or definition.

During the development of a text and its presentation it is very useful
for an author to have the work read by another person. A more detached
reader can spot deficiencies which, whether through over-familiarity or
carelessness, are not apparent to the writer. I have been fortunate, in
this respect, to have been kindly and conscientiously assisted by Dr
G. T. Kneebone and Dr John Mayberry. Both have read several versions
of the various chapters and have made numerous suggestions for
improvement, most of which have been incorporated in the book. I am
most grateful to them for their effort, and I can only hope that they will
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derive some satisfaction from the final version which is my response to
their comments.

May Abrahamson made a marvellous job of typing (and patiently
re-typing). Cambridge University Press has again been most efficient
and helpful. The University of Stirling has assisted by allowing me leave
during ‘which the bulk of the writing was done. My sincere thanks go to
all of these.

A.G.H. January 1982

4 ‘s.siV"*
o~
lpwnq oo ¢ I



CONTENTS

—
N

Preface
1 Numbers
1.1 Natural numbers and integers
1.2 Rational numbers
1.3 Real numbers
1.4 Decimal notation
2 The size of a set
2.1 Finite and'countable sets
2.2 Uncountable sets
2.3 Cardinal numbers
3 Ordered sets
* 3.1 Order relations and ordered sets
3.2 Lattices and Boolean algebras
4 Set theory
4.1 What is a Set?
4.2 The Zermelo-Fraenkel axioms
4.3 Mathematics in ZF
4.4 Sets and classes
4.5 Models of set theory
5§  The axiom of choice
5.1 The axiom of choice and direct applications
5.2 Zorn’s lemma and the well-ordering theorem
5.3 Other consequences of the axiom of choice
6  Ordinal and cardinal numbers
6.1 Well-ordered sets and ordinal numbers
6.2 Transfinite recursion and ordinal arithmetic
6.3 Cardinal numbers
Hints and solutions to selected exercises
References
Index of symbols
_ Subject index

vii

18
26
43
51
51
63
73
82
82
97
108
108
115
129
145
156
163
163
171
184
192
192
205
221
237
247
249
252



1 ! 2l

NUMBERS

Summary

First we consider what are the basic notions of mathematics,
and emphasise the need for mathematicians to agree on a common
starting point for their deductions. Peano’s axioms for the natural num-
bers are listed. Starting with a system of numbers satisfying Peano’s
axioms, we construct by algebraic methods the systems of mtegers,
rational numbers, real numbers and complex numbers. At each stage it
is made clear what properties the system constructed has and how each
number system is contained in the next one. In the last section there is
a discussion of decimal representation of ratxonal numbers and real
numbers.

“The reader is presumed to have some experience of working with sets

and functions, and to be familiar with the ideas of bijection, eqmvalence
relation and equivalence class.

Ak Nmnl numbers and integers
It is fashionable nowadays at all levels of study from elementary

school to university research, to regard the notion of set as the basic

" notion which underlies all of mathematics. The standpoint of this book
is that the idea of set is something that no modern mathematician can
be without, but that it is first and foremost a tool for the mathematician,
a helpful way of dealing with mathematical entities and deductions. As
such, of course, it becomes also an object of study by mathematics. It
is inherent in the nature of mathematics that it includes the study of the
methods used in the subject; this is the cause of much difficulty and
misunderstanding, since it apparently involves a vicious circle. The
trouble is that most people (mathematicians included) try to regard

1



2 Numbers

mathematics as a whole — a logical system for proving true theorems
based on indubitable principles. The present author believes that this is
a misleading picture. Mathematics is rather a mixture of intuition,
analogy and logic —a body of accepted knowledge based on perceived
reality, together with tools and techniques for drawing analogies, making
conjectures and providing logical justification for conclusions drawn.

The fundamental notions of mathematics now are the same as they
were a hundred years ago, namely, numbers or, to be more specific, the
number systems. Modern abstract mathematics (with the exception,
perhaps, of geometry and topology) is based almost entirely on analogies
drawn with properties of numbers. Here are some simple examples. The
algebraic theory of fields arises from a generalisation of the properties
of addition and multiplication of numbers. Real analysis is just the study
of functions from real numbers to real numbers. Functional analysis
applies the methods of algebra (themselves derived from methods used
in concrete numerical situations) to mathematical systems which are
generalisations of three-dimensional physical space (which can_be rep-
resented, of course, via coordinate geometry, by means of ordered triples
of real numbers). 4

Our knowledge of the number systems derives from our perception
of the physical world. We count and we measure, and the origins of
mathematics lie in these activities. Modern methods can help in writing
down and working out properties of numbers and in clarifying relation-
ships between these properties. Indeed, this process has reached an
advanced stage. Most mathematicians now agree on what are the prin-
ciples which it is proper to use in order to characterise the number
systems. This is very significant, for it provides a common starting point
for logical deductions. If all mathematicians based their deductions on
their own personal intuitions then communication would be very difficult
and the subject would not be very coherent. One purpose of this book
is to expound and explain the common starting point. In the first chapter
we deal with the number systems out of which mathematics develops,
and in subsequent chapters we shall investigate some of the tools (notably
set theory) and try to explain what modern ‘foundations of mathematics’
is all about.

Counting is the first mathematical activity that we learn. We learn to
associate the objects in a collection with words (numbers) which mark
them off in a sequence and finally indicate ‘how many’ there are in the
collection. This experience gives us an . intuition about an unending
sequence of numbers which can be used to count in this way any finite
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collection of objects. It is assumed that the readers of this book will
have a well-developed intuition about natural numbers, so we shall not
go into the psychology behind it (this is not to imply that the psychology
of mathematical intuition is not worthy of study — just that it is outside
the scope of this book).

Notation The set of natural numbers will be denoted by N.
N is the collection {0, 1, 2, ...}. Notice that we include 0 in N. This is
merely a convention. It is common but not universal.
Let us list some properties of these numbers which accord with
intuition.

Examples 1.1
(a) There is an addition operation (a two-place function on N)'which
' is commutative and associative.

(b) O+n =n, for every neN.

(c) In the list {0, 1, 2, ...}, the number followmg n is n +1, for each
n.

(d) n+1#n, for every n eN.

(e) m+1=n+1implies m =n, for every m,neN.

(f) There is a multiplication operation (also a two-place function
on N) which is commutative and associative, and whlch dis-
tributes over addition.

(g) O0xn=0,and 1 Xn =n, for every n eN.

(h) mXn =pxn implies m = p, for every m, n,p eN (n #0).

» Clearly, we can continue writing down such properties indefinitely.
These are the kind of things we learn in elementary school. We learn
them, discover that they work, and come to believe them as truths which
do not require justification. However, the mathematician who is working
in the theory of numbers needs a starting point in common with other
mathematicians. Peano’s axioms (listed first in 1888 by Dedekind, and
not originating with Peano) are such a common starting point. They are
five basic properties, all of them intuitively true, which serve as a basis
for logical deduction of true theorems about numbers. They are as
follows.
(P1) There is a number 0.
(P2) For each number n, there is another number n’ (the successor
of n).
(P3) For no number n is n' equal to 0.

-



4 Numbers

(P4) If m and n are numbers and m’' =n’, then m = n.
~ (P5) If A is a set of numbers which contains 0 and contains n' for
every n € A, then A contains all numbers. .
(Note that we have used the word ‘number’ here as an abbreviation for
‘natural number’.)

Remarks 1.2

(a) (P1) and (P2) provide the process for generating the sequence
of natural numbers corresponding to the intuitive counting pro-
cedure. (P3) reflects the fact that the sequence has a beginning.

(b) (P4)is a more complicated property of the sequence of numbers:
different numbers have different successors.

(c) (P5) is the principle of mathematical induction: This is the most
substantial of the five, and is the basis of most proofs in elemen-
tary number theory. It may be more familiar as a method of
proof rather than an axiom, and in a slightly different form: if
P(n) is a statement about a natural number n such that P(0)
holds, and P(k + 1) holds whenever P(k) holds, then P(n) holds
for every natural number n. This can be seen to be equivalent
to (PS) if we think of the set A and the statement P(n) related
by:

n € A if and only if P(n) holds.

Thus, given a set A, a statement P(n) is determined and vice
versa.

» There is no mention ifi Peano’s axioms of the operations of addition
and multiplication. This is because these can be deﬁned in terms of the
other notions present.

The common starting point, therefore, need not mention these oper-
ations. However, it is quite difficult to carry out the procedure of defining
them and justifying their existence (see Section 4.3) and, for our present
purposes, it is certainly unnecessary. For our purposes we can broaden
the common starting point, that is to say, we can include amongst our
basic intuitive properties the following.

(A) There is a two-place function (denoted by +) with the properties:

m+0=m, forevery number m.

m+n'=(m+n), forallnumbers m, n.
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(M) There is a two-place function (denoted by x) with the properties:
mX0=0, foreverynumber m.
mXn'=(mXn)+m, for all numbers m, n.

(Following the usual mathematical practice we shall usually omit multi-
plication signs, and write mn rather than m X n. The exceptions will be
when special emphasis is being placed on the operation of multiplication.)

We could also include amongst our basic intuitive properties the
assertions that these operations satisfy the commutative, associative and
distributive laws, but it is not difficult to prove, from the properties given
above, that these hold. Let us carry out one such proof, as an example.

Theorem 1.3 ,
Addition on N is commutative.

Proof :
This is an exercnse in proof by mductlon We reqmre two
preliminary results: |
(i) 0O+m=m, forallmeN. ! S orbi
(ii)) m'+n=(m+n), forallm,neN.

For (i), we use induction on m. By property (A) we have 0+0 0.
Suppose that 0+k = k. Then 0+k'—(0+k) k' (usmg pmperty (A)
again).

Hence, by the induction principle, 0+m =m holds for all m eN

For (ii), we apply (P5) to the set

A = {neN m'+n=(m+n), foreverymeN}.

First, 0 € A, since m'+0 = m’' (by property (A)) and (m +0)’ = (m)’ (agam

by property (A)), and so m'+0 = (m +0)’, for any m € N. Second, suppose

“that k€ A, i.e. m'+k =(m + k) for every m eN. Then

m'+k'=(m'+k) (by property (A)), ;

=((m+k)) (by our supposition that k € A),
=(m+k'y . (byproperty (A)).

This holds for every m eN, so k'e A. We can therefore apply (P5) to

deduce that A =N, i.e., (ii) holds for all m, n eN.

Now to complete the proof of the theorem we need a further induction.
Let B be the set {n eN:m +n =n +m, for every m eN}.
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First, 0€ B since m +0=m (by property (A)), and 0+m =m (by (i) .
above). Second, let us suppose that k € B, i.e., m+k =k +m for every
m €N. Now

m+k'=(m+k) (byproperty (A)),
=(k+m)" since k€ B,
=k'+m  (by (ii) above).

This holds for every meN, so k'€ B. Applying (P5) to B we conclude
that B =N, i.e. m+n=n+m for all m, n eN.

» It is not our purpose to develop elementary number theory, but there
are some basic results which we should at least mention.

Remark 1.4

For every natural number n, either n =0 or n =m’' for some
natural number m.

This may be proved using Peano’s axioms. It is left as an exercise for

the reader, with the hint that (P5) should be applied to the.set A =
{n eN:either n =0 or n = m' for some m eN}.

Theorem 1.5
Every non-empty set of natural numbers has a least member.
Before we prove this we require to give an explanation of the term
‘least member’. Again this is an intuitive notion, but its properties can
be derived from the definitions and properties of numbers already given.
For m,neN we write m<n if there is x €N, with x#0, such that
m +x = n. (We also use the notation m <n, with the obvious meaning.)
A set A of natural numbers has a least member if there is an element
me A such that m <n for every other element n € A. The result of
Theorem 1.5 is intuitively true when we think of the normal sequence
{0, 1, 2,.. .} of natural numbers and note that the relation < corresponds
to the relation ‘precedes’.

Proof (of Theorem 1.5)

Let A be a set of natural numbers which contains no least
member. We show that A is empty. We apply (P5) to the set B =
{xeN:x=<n for gvery neA}. Certainly 0B, since 0<n for every
neA. Suppose that ke B. Then k <n for every n € A. But k cannot
belong to A, since if it did it would be the least element of A. Hence &
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k <n for every n € A, and consequently k+1<n for every ne A, i.e.
k +1eB. By (PS), then, we have B =N. By the definition of B, this
means that x < n holds for every x e Nand every n € A. This is impossible
unless A is empty, in which case it is vacuously true. The proof is now -
complete.

» The above theorem can be used to justify a slightly different version

of the principle of mathematical induction. :

(P5*%) If A is a set of natural numbers which contains 0 and contains
n' whenever 0,1,...,n all belong to A, then A contains all
natural numbers. '

Theorem 1.6
(P5*) holds (as a consequence of (P5), through Theorem 1.5).

>

Proof
Let A =N, with 0€ A and such that n'€ A whenever 0, 1, ...,
n € A. We require to show that A =N. Consider the set N\A (the set of
all elements of N which do not belong to A). Suppose that N\A is not
empty. Then by Theorem 1.5 it contains a least member, no, say. We
have therefore no# A, and x € A for every x with x <ng. Now ng#0,
since 0€ A, by our original hypothesis. Hence, no=m’ for some m eN
(by the result of Remark 1.4). So we have m'ég A, but we have also 0,
1, ..., me A. This is a contradiction since our hypothesis says that we
have n'e A whenever 0, 1, .. ., n € A. It follows that N\A is empty, and
consequently A =N.
» The last of our basic results is one that-we shall refer to when we
discuss properties of the other number systems. It is the result which is
commonly known as the division algorithm. Its proof is given here for
-the sake of completeness, and the reader may omit it.

Theorem 1.7
" LetaeN, beN, b#0. There exist g eN, reN with

a=gb+r and r<b.

Moreover, the numbers q and r are uniquely determined.

Proof
Let S={yeN:y+xb=aq, for some xeN} (S may be thought
of as the set of differences a —xb for all those x €N such that g = xb.)
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§ is not empty, since a € S (corresponding to x = 0). Hence, by Theorem
1.5, § contains a least element, say r. Since r € S, there is q €N such that
r+qb=a,ie.a=qb+r. We must have r <b, for otherwise b <7, so that
r=b+ry, say, with r;eN, and r, <r, necessarily. Then r+gb =a gives
rntb+qgb=a, ie. n+(q+1)b=a, and this implies that r,eS. This
contradicts the choice of r as the least element of S.

It remains to show that g and r are unique. Suppose that a=gb+r =
q'b+r', with r<b, r'<b, and r<r/, say. Then there is teN such that
r+t=r',and wehave gb +r=q'b +r+t and hence gb = q'b + 1. It follows
that q'b <gb, so q'<gq. Let g =q'+u, say, with u €N. Then q'b+ub=
gb=q'b+t, giving ub=t. Since r+t=r', then, we have r+ub=r"
Consequently ub <r', which contradicts r'< 5, unless u =0. Thus we
must have u = 0, and this implies that 7 = /', t=0,and g = ¢’, as required.

In the above proof we have used, be51des Theorem. 1.5, a few proper-
ties of addition, multiplication and inequalities which have not been
explicitly derived from our basic assumptions. The most apparent, per-
haps, is the cancellation law for inequalities: if ax < bx and x # 0, then
a <b. This may be treated as an exercise.

» Natural numbers are a product of intuition. There is no need for a
mathematlcal definition of natural numbers. Peano’s axioms may be
seen as an attempt to define, but they are in fact merely an attempt to
characterise natural numbers. But immediately two questions arise. First,
are Peano’s axioms true of our intuitive natural numbers? And second,
is there any collection of objects, essentially different from the set of
natural numbers, for which Peano’s axioms also hold true? The answer
to the first question is clearly (intuitively) in the affirmative. The answer
to the second is much harder to find, for it involves the mathematical
abstractions: ‘collection of objects for wluch Peano’s axioms hold
true’, and ‘essentially different’. We shall see in due course that the
second answer is negative, but before that we must explain the
abstractions.
Consider the set 2N = {27 : n € N} of even natural numbers, and denote

k +2 by k*, for each k € 2N. Then the following are true:

(1) 0e2N.

(2) For each k € 2N, k* e 2N.

(3) Forno ke?2Nis k* equal to 0.

(4) If k, 1 € 2N, then k* =

(5) If A<2N is such that OeA and k*c A whenever keA, then

A =2N.
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In other words, Peano’s axioms ‘hold’ for the set 2N (together with the
operation *). It is not difficult to conceive of other structures (i.e. sets
together with unary operations) for which Peano’s axioms also hold. We
can say precisely what this means in general.

Definition
A model of Peano’s axioms is a set N, together with a function
f and an object e (a triple (&, f, e)) such that
(P1*) eeN.
(P2*) The domain of f is N, and for each x € N, f(x) € N.
(P3*) If xe N, then f(x) #e.
(P4*) If x, ye N and f(x)=f(y), then x = y.
(P5*) If A is a subset of N which contains e and contains f(x) for
every x € A, then A= N. :
The function f is to act like the successor function and e is to act like
0. The reader should compare these conditions (P1%*), . . ., (P5*) carefully
with (P1), ..., (P5).

» The model (2N, *, 0) given above, by its very existence, tells us that
Peano’s axioms do not characterise the set of natural numbers uniquely.
But this new model has a structure which is identical to the structure of
(N, ', 0). The two models are isomorphic, that is to say there is a bijection
¢ :N->2N such that ¢(n’) ={e(n))* for all neN, and ¢(0)=0. (The
function ¢ is given by ¢(n) = 2x.) In general we can make the following
definition.- - ‘
Definition b 2 :
Two models (Ny, fi1, e1) and (N3, f>, e;) of Peano’s axioms are
isomorphic if there is a bijection ¢ : N; > N, such that
(i) @(filx)=fi(p(x)), forallxeN,
and
(i) o(e))=e,.

Such a function is said to be an isomorphism.

» Models of Peano’s axioms exist which are different from, but isomor-
phic to, (N, ’, 0). Mathematically, such models are essentially the same,
and for mathematical purposes it really does not matter whether natural
numbers are taken to be the elements of N or the elements of a different
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but isomorphic model. This will form the basis of our construction of
natural numbers within set theory in Section 4.3. In a sense it is only a
matter of iabelling. If two models are isomorphic then their mathematical
characteristics are the same but their elements may be objects of different
sorts.

What makes the overall situation sensible, however, is the result of
Corollary 1.9 below. It implies that there is no model of Peano’s axioms
which is not isomorphic to (N, ’, 0). In other words, Peano’s axioms do
- characterise the structure of (N, ', 0) completely.

5
Theorem 1.8 (definition by induction)
Let (N, f, e) be any model for Peano’s axioms. Let X be any -
set, let a € X and let g be any function from X to X. Then there is a
unique function F from N to X such that

F(e)=a,
and

F(f(x))=g(F(x)), foreachxeN.

» Theorem 1.8-legitimises what is probably a familiar process for
defining functions with domain N. This process was used on page 4
above in the properties (A) and (M). First specify the value of F(0), and
then, on the assumption that F(n) has been defined, specify F(n + 1) in
terms of F(n). Here, of course, we are dealing with an arbitrary model
of Peano’s axioms, rather than N. The proof of Theorem 1.8 is lengthy
and technical, so we shall omit it at this stage. Theorem 4.15 is a particular
case of Theorem 1.8, concerning that model of Peano’s axioms (the set
of abstract natural numbers) which is constructed in Section 4.3. The
proof given there can be generalised in a straightforward way to apply
to an arbitrary model, as required here

Corollary 1.9
Any two models of Peano’s axioms are isomorphic.

Proof
Let (N1, f1, 1) and (N3, f3, e;) be models of Peano’s axioms. By
Theorem 1.8, there is a unique function F : N; » N, such that

F(e1)=ea,



