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Translator’s Preface

The translator of a mathematical work faces a task that is at once fascinating
and frustrating. He has the opportunity of reading closely the work of a master
mathematician. He has the duty of retaining as far as possible the flavor and
spirit of the original, at the same time rendering it intc a readable and idiomatic
form of the language into which the translation is made. All of this is challenging.
At the same time, the translator should never forget that he is not a creator,
but only a mirror. His own viewpoints, his own preferences, should never lead
him into altering the original, even with the best intentions. Only an occasional
translator’s note is permitted.

The undersigned is grateful for the opportunity of translating Professor
Kirillov’s fine book on group representations, and hopes that it will bring to the
English-reading mathematical public as much instruction and interest as it has
brought to the translator. Deviations from the Russian text have been rigorously
avoided, except for a number of corrections kindly supplied by Professor Kirillov.
Misprints and an occasional solecism have been tacitly taken care of. The trans-
lation is in all essential respects faithful to the original Russian.

The translator records his gratitude to Linda Sax, who typed the entire
translation, to Laura Larsson, who prepared the bibliography (considerably
modified from the original), and to Betty Underhill, who rendered essential
assistance.

Seattle, June 1975 Edwin Hewitt



Preface

The author of this book has, over a number of years, given courses and directed
a seminar at Moscow State University on the theory of group representations.

The majority of the students in these courses and participants in the seminar
have been university students of the first two years (and also occasionally graduate
students and gifted secondary school pupils).

The membership of the seminar has constantly renewed itself. There have
been new participants, not overly burdened with knowledge, but ready to study
things new to them and to solve a huge number of problems.

For each new group of participants, it was necessary to organize a “‘primer”’
on the parts of mathematics needed for the theory of representations and also
on the foundations of the theory of representations.

The author quickly got the idea of replacing himself by a book which should
be on the one hand not too thick (which always frightens the reader) but which
on the other hand should contain all of the needed information.

Through various circumstances, the realization of this idea required far more
time than was originally contemplated. Nevertheless, through the moral support
of friends and of my teacher 1. M. Gel’fand, the book has now finally been written.
The author begs forgiveness of his readers for the facts that the book is thicker
than one would like and also contains only a part of what it ought to.

The first part of the book (§§ 1-6) are not directly connected with the theory of
representations. Here we give facts needed from other parts of mathematics,
with emphasis on those that do not appear in the prescribed curricula of elementary
university courses. A reader familiar with this material may begin at once with
the second part (§&§ 7-15). This part contains the principal concepts and methods
of the theory of representations. In the third part (§§ 16-19), we illustrate the
general constructions and theorems of the second part by concrete examples.

The historical sketch found at the end of the book reflects the author’s view
of the development of the theory of representations, and makes no claim to be a
reference work on the history of mathematics. At the end of the essay, we describe
the present state of the theory of representations and give references to the
periodical literature.

A particular feature of the book, and one which has reduced its size enormously,
is the large number of problems. These problems, and the remarks appended to
them, are printed in separate paragraphs. Nevertheless, one must not ignore
them, since they play an essential role in the main text. In particular, a majority
of the proofs are given in the form of a cycle of mutually connected problems.
Almost all problems are supplied with remarks, which as a rule enable one to
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reconstruct the solution without difficulty. All the same it is useful to try to solve a
problem independently and to turn to the remark appended only in case of failure.

We point out certain peculiarities in our choice of subject matter. Very little
mention is made in the book of finite-dimensional representations of semisimple
Lie groups and Lie algebras. The fact is that there are already available in the
Russian language a sufficient number of good expositions of this part of the
theory of representations (see [47], [46], [57]), and the author did not wish to
repeat them.

The réle of the theory of group representations in the theory of special functions
is completely ignored in the present book. The monograph of N. Ja. Vikenkin
[53] may serve as a good introduction to this topic.

The author’s task has also not included a description of the manifold
applications of the theory of representations in mathematical physics. At the
present time there is a wide literature dealing with these applications (see for
example [3], [37], [40], [28]).

We have apportioned a large space to the method of orbits, which has up to
now not made its way into textbooks, and which by its simplicity and perspicuity
without doubt belongs to the fundamentals of the theory of representations.
A certain incompleteness in § 15, which deals with the method of orbits, is ex-
plained by the current state of knowledge in this area. Many important theorems
have been proved only in special cases, or indeed exist only as conjectures.

At the present time, many mathematicians are working in this field both in the
Soviet Union and in other countries. Beyond any peradventure our knowledge
of the connections between orbits and representations will be much greater
within a few years than it is now. The author hopes that some of the readers of
this book may bring their contributions to the development of the theory of

orbits.
A. Kirillov
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First Part. Preliminary Facts

§ 1. Sets, Categories, Topology

1.1. Sets

The background in the theory of sets needed to read this book is amply sup-
plied by what is given in ordinary university courses. (See for example the first
chapters of the textbooks of A.N. Kolmogorov and S.V. Fomir [38] and of
G.E. Silov [49].) One can find more penetrating treatments (including an exact
definition of the concept of set) in the books of Fraenkel and Bar-Hillel [17]
and P. Cohen [12].

For the reader’s convenience we list here some of the notation that we shall
use and also recall certain definitions.

0 denotes the void set;

xeX means that the element x belongs to the set X'; '

x¢X means that the element x does not belong to the set X ;

XcY means that the set X is contained in the set Y (and possibly coin-
cides with it);

U X, denotes the union of the system of sets X,, which are indexed by

acAd .

the set A; if A 1s finite, then we also use the notation Xu Yu  -uZ;

ﬂ X, denotes the intersection of the system of sets X, ;
2€ A y
X\Y denotes the complement of the set X in the set Y;

[1X. denotes the Cartesian product of the sets X,, that is, the collection

x€ A

of all functions {x,},.,, where x,e X,;
[ XY .
or -denotes the mapping f of the set X into the set Y;
xLy
fix—y .
or means that the mapping f carries the element x into the element y;
ot
x>y

XY is the set of all mappings of the set Y into the set X
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card X 1s the cardinal number of the set X; for finite sets X we also use
the notation |X|;

fxy Al denotes the set of all x that satisfy the condition A.

We say that a binary relation is defined in a set X if we have specified a cer-
tain subset R of X X X. Instead of the relation (x,y)e R we also write xRy and
we say that x and y stand in the relation R or that x and y are connected by the
relation R. The inverse relation R™' is defined as the set of all pairs (x,y) for
which (y.x)eR. The product R, -R, 1s the set of all pairs (x,y) for which there
exists an element = such that (x,z)e R, and (z,y)eR,.

A relation R is called reflexive if R contains the diagonal 4={(x,x); xe X},
symmetric if R=R™ ', and transitive if R-RcR. A relation with all three of
these properties is called an equiralence relation. In this case, instead of (x,y)eR,
we say “x and y are R-equivalent” (or simply equivalent, if it is clear what relation
R we have in mind).

The set of elements equivalent to a given xe X is the equivalence cluss con-
taining x. The set X g, of equivalence classes is called the factor set of the set
X by the relation R. Assigning each xe X to the class containing it, we obtain
the canonical mapping p: X = X p,.

It is clear that a mapping f: X—Y can be embedded in the commutative

diagram'
X )

if and only if f is constant on each equivalence class. In this case, g is defined
uniquely from f and is called a factor mapping.

An order relation on a set X is a transitive binary relation R that is anti-
symmetric in the following sense: RN R '=A. For an order relation R, we
usually write x>y instead of (x,y)eR.

A set that is equipped with an order relation is said to be ordered (sometimes
partially ordered). An ordered set is said to be linearly ordered if RUR ™ '=X XX
(i.e, if every pair of elements are comparable). The following assertions are
equivalent:

1 (Zermelo's axiom of choice). The product of an arbitrary family of nonvoid
sets is nonvoid.

2 (Zorn's lemma). Suppose that X is an ordered set in which every linearly
ordered subset Y is bounded (that is, there is an element xe X such that x>y
for all veY). Then the set X contains at least one maximal element (that is, an
element x, such that if x>x,, then x=x,; maximality of x, does not imply
that x,>x for all xeX).

Zorn's lemma is a generalization of the well-known principle of mathematical
induction, and replaces this principle in situations where we are considering
uncountable sets.

' See footnote 2 on page 4.



§ 1. Sets, Categories, Topology ‘ 3

A directed set' is a set A with an order relation R defined in it satisfying the
following additional condition:

for arbitrary a,ffe A, there exists an element € A such that a<. <.

Let (A,R) be a directed set and X an drbnmry set. A mapping of 4 into X
is called a net or a direction in X. Clearly this notion is a generalization of the
notion of a sequence in X (to which it reduces if 4 1s the set of natural numbers
with the ordinary order relation).

As a rule one considers in mathematics sets which are endowed with one or
another structure (for example, ordered sets. groups, topological spaces. and so
on). We can give an exact meaning to this notion.

A tower of sets over X is any set obtained from X and auxiliary sets S, T, ...
by the elementary operations listed above (see page 1). To define a structure
on X is to fix an element of a certain tower of sets over X. (For the foregoing
examples of structures. the corresponding towers have the form (2)¥*¥ x¥x¥
(2)®", where (2) is an auxiliary set consisting of exactly 2 elements.)

1.2. Categories and Functors

The language of categories, which will be used in this book. is so simple and
natural that it presents no difficulties even for a reader unfamiliar with it. Here

. we give only a few basic definitions. More information can be found, for example,
in the book of A.Grothendieck [25, Ch. I] or in the appendix of D. Buchsbaum
to the book [10]. See also the Appendix “The language of categories” to the
lecture notes of Ju.I. Manin on algebraic geometry (Publishing House of Mos-
cow State University, 1970), from which we borrow the first sentence.

“The language of categories embodies a “sociological” aﬁproach to a mathe-
matical object: a group or a space is considered not as a set with an inherent
structure by itself, but as a member of the society of objects similar to it.”

We say that we are given a category K if

1) there is given 4 class ObK of objects of the category K;

2) for every pair A.B of objects of K there is given a set Mor(A4,B) of mor-
phisms of the object 4 into the object B;

3) there is a law of composition defined for every triple A B,C of objects
in K, that is, a mapping

Mor(A, B) X Mor(B,C)—Mor(A4,C).

The composition of the morphisms feMor(4,B) and geMor(B.C) is
denoted by gof and satisfies the following conditions:
a) fo(goh)=(fog)oh for arbitrary feMor(C,D), ge Mor(B,C), he Mor(A,B):
b) for every AeObK there exists an element 1,eMor(A4,4) such that
1,0f =f, gol,=g for arbitrary feMor(B, A), ge Mor(A4, B).
- As an example, consider the category M where ObM is the class of all sets
and Mor(A4, B)=B*. Many of the categories considered below are subcategories

! Bourbaki uses the expression filtering to the right.
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of M, that is, the objects of these categories are sets, the morphisms are mappings
of sets, and composition of morphisms is composition of mappings'.

If a morphism feMor(A4,B) admits an inverse morphism f ' (i.e.,a mor-
phism such that fof '=1, f 'of=1,), then it is called an isomorphism,
and the objects A and B are called isomorphic.

For every category K, we can define the dual category K°. By definition,
we have ObK°=O0bK, Mor(A4,B)"=Mor(B,A4). The composition of f and ¢
in K° is defined as the composition of g and f in K.

An object X is called universally repelling (universally attracting) if for every
Ye ObK, the set Mor(X,Y) (Mor(Y, X)) consists of exactly one element. From
this definition, it follows that if there are scveral universal objects in a category
K, then they are all canonically isomorphic.

It 1s clear that in going from a category to its dual, universally repelling
objects turn into universally attracting objects, and conversely.

The concept of universal object permits us to consider from a single point
of view a great number of constructions that are used in mathematics. In par-
ticular, we shall see below that tensor products, enveloping algebras, induced
representations, and cohomology of groups can be defined as universal objects
in appropriately chosen categories.

By way of an example, we now give the definition of the sum and product
of objects of an arbitrary ctategory.

Let | X,},.4 be a family of objects of a category K. We shall consider a new
category K,. The objects of K, are the collections (Y, f,},. ), where Y is an
object in K and f,eMor(X,,Y).

A morphism from (Y,{f,},ca) 10 (Z.{g,},c4) is defined as a morphism
h: Y—Z such that for all xe A, the following diagram is commutative?:

X,
fx/ \\i:
h

Y —Z

We shall suppose that there is a universally repelling object {X,i,; in the
category K, (all such objects are canonically isomorphic, as we mentioned
above). Then the object X is called the sum of the family {X,} and the morphism
1s called the canonical embedding of the summand X, in the sum X.

The definition of the product P of the family {X,],., and of the canonical

projection p,e Mor(P,X,) is obtained from the definition of sum by reversing
arrows, that is, by replacing K, by (K3)".

I

! The reader may wish to have an example of a category not of this type. Examples are the

category of formal groups and the category of diagrams. The category K, considered
below is a special case of these.

? A diagram consisting of objects and morphisms of a category K is said to be commutative
if the composition of morphisms along a path marked out by arrows of the diagram depends
only upon the initial and terminal points of the path. In the following example. this means
that hof, =g,.
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Problem 1. Show that the sum and product exist for an arbitrary family of
objects in the category M.

Hint. Consider the operations of disjoint union and ordinary product of
sets.

A small change in the definition of sum and product leads to the concepts
of inductive and projective limits. Suppose that the set of indices A4 is a directed
set and, if a<p, then there exists a morphism f,;e Mor(X,,X,) such that
Say=Sp,0f4p for every triple a<f<v. We consider the category whose objects
are collections (Y,{f,}.c ) fx€Mor(X,,Y), such that for all a<f the following
diagrams commute:

Ja
X, %2 x,
Y

The morphisms of (Y,{f,}) into (Z,{g,}) are those morphisms heMor(Y,Z)
such that for all ae A4, the following diagrams commute:

X,
7\
Y e

A universally repelling object in this category is called the inductive limit of
the family | X,}. The definition of projective limit is obtained by reversing arrows.

Problem 2. Let A be the set of all natural numbers with the following defini-
tion of order: m<n means that m divides n. Let X, be the set of all integers, for
every n. Let f,,, be the operation of multiplying by n/m. Prove that the inductive
limit of the family {X,,} can be identified in a natural way with the set of rational
aumbers, and the mapping f,, with division by m.

Let K, and K, be two categories. Suppose that to every object X in K|, there
corresponds an object F(X) in K, and to every morphism feMor(X,Y) there
corresponds a morphism

F(f)eMor(F(X), F(Y)).
Suppose further that the equalities

Fly)=1px, F(fog)=F(f)oF(g),

hold. Then we say that F is a covariant functor from K, into K,. We obtain the
notion of a contravariant functor if we replace the last condition by F(fog)
= F(g)oF(f). (This is equivalent to replacing one of the categories K, and K,
by its dual category.)
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Covariant functors from K, into K, are themselves a category. The mor-
phisms of F into G are the so-called functorial morphisms. These assign to each
object X in K, a morphism ¢(X): F(X)—G(X) such that the diagram

F(X) 2, G(x)
F() G(f)

F(Y) =22, G(Y)

is commutative for all fe Mor(X,Y).

The category of contravariant functors is defined analogously.

We can also define functors of several variables, covariant in some variables
and contravariant in the others.

Problem 3. Let K be an arbitrary category. Show that the mapping
(X,Y)—>Mor(X,Y) can be completed to a functor from K X K into M, contra-
variant in the first variable and covariant in the second.

Hint. For feMor(X,,X), geMor(Y,Y,), pec Mor(X,Y), set F(f,g): p—gogof.

A covariant functor F from the category K into M 'is called representable
if it is isomorphic to a functor Mor(X, "), obtained from a bifunctor' Mor by
fixing the first variable in an obvious way. The object X is called a representing
object for the functor F. '

Analogously, a contravariant functor has a representing object Y if F is iso-
morphic to Mor(+, Y).

Many important functors are representable or become representable under
suitable modification of the category.

1.3. The Elements of Topology

This section consists essentially of a list of terminology, concepts, and basic
facts about topology. The fundamentals of topology can be found in the book
[38. Ch. IT]. A more detailed treatment is given in the book of J. L. Kelley [36].

A topological space is a set X in which we are given a family t of subsets
having the following properties:

1) the void set and X itself belong to t;

2) the intersection of a finite number of elements of t belongs to t;

3) the union of an arbitrary family of elements of 7 belongs to 7.

The system 1 is called a topology on X.

A subsystem t'crt is called a base for the topology t if every element of t
is the union of a certain family of elements of 7. Every system of subsets of X
that satisfies 1) and 2) above is the base for a certain topology.

Sets belonging to the topology t are called open relative to this topology.
An open set containing a point xe X is called a neighborhood of that point.
The complements of open sets are called closed. For every Yc X, there exists
a smallest closed set containing Y. It is called the closure of Y. We say that a

' That is, a functor of two variables.
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subset Y is dense in X if the closure of Y coincides with X. The sets that are
obtained from open and closed sets by the operations of countable unions,
countable intersections, and complementation are called Borel sets.

One can define the general concept of a limit in a topological space in the
following way. Let {x,},., be a direction in X (that is, a family of points of X,
numbered by the elements of a directed set A; see para. 1.1). A point x is said
to be a limit of the direction {x,} if for every neighborhood U of the point x,
there exists an element ae A such that xz;eU for all p>a. We write this as
Xg—>x or limx,=x. The reference to the set A is often omitted.

acA

A meapping of one topological space into another is called continuous if the
inverse image of every open set is open, and is called a Borel mapping if the in-
verse image of every open set is a Borel set.

Problem 1. Prove that a mapping f is continuous if and only if the condition
X, X implies that _/‘(x,)Tf(x) (that is, f commutes with the operation of
passing to the limit). .

In spaces with a countable basis, the general directions cf problem 1 may
be replaced by ordinary sequences.

Topological spaces and continuous mappings form a category T, in which
the sum and the product of an arbitrary family of objects is defined.

Problem 2. Prove that the product of a family of topological spaces {X,,7,}.c4
is the set [] X, with the topology t, a basis for which is formed by sets of the

acA
form [] U, X J] X,, where 4, is a finite subset of A and the sets U, be-
ae A, ae A\A,
long to ,.

Hint. First consider the product of two spaces.

Every subset Y of a topological space (X,7) is itself a topological space if
we define the open subsets of Y to be the intersections with Y of open subsets
of X. A subset Y with this topology is called a subspace of X.

Let R be an equivalence relation on X. The factor set X, will be a topological
space if we define as open those subsets whose inverse images are open in X.

" The set X r) With this topology is called a factor space of the space X.

A topological space is called compact if every covering of it by open sets

admits a finite subcovering.

Problem 3. The product of an arbitrary family of compact spaces is compact.
The image of a compact space under a continuous mapping is compact.

A topological space is called separated or Hausdorff if every pair of distinct
points admit disjoint neighborhoods. It is called semiseparated, or a T, space,
if one of each pair of distinct points admits a neighborhood not containing the
other. A compact Hausdorff space is called a compactum.

In Hausdorff spaces, every direction can admit only one limit. This property
accounts for the fact that the majority of topological spaces used in mathematics
and in its applications are Hausdorff.

Nevertheless, there are important classes of topological spaces for which
Hausdorff separation does not in general hold. An example is provided by factor



