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Foreword to the first edition

Edmund M. Clarke

FORE Systems Professor of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Formal methods have finally come of age! Specification languages, theorem
provers, and model checkers are beginning to be used routinely in industry.
Mathematical logic is basic to all of these techniques. Until now textbooks
on logic for computer scientists have not kept pace with the development
of tools for hardware and software specification and verification. For exam-
ple, in spite of the success of model checking in verifying sequential circuit
designs and communication protocols, until now I did not know of a sin-
gle text, suitable for undergraduate and beginning graduate students, that
attempts to explain how this technique works. As a result, this material is
rarely taught to computer scientists and electrical engineers who will need to
use it as part of their jobs in the near future. Instead, engineers avoid using
formal methods in situations where the methods would be of genuine benefit
or complain that the concepts and notation used by the tools are compli-
cated and unnatural. This is unfortunate since the underlying mathematics
is generally quite simple, certainly no more difficult than the concepts from
mathematical analysis that every calculus student is expected to learn.
Logic in Computer Science by Huth and Ryan is an exceptional book.
I was amazed when I looked through it for the first time. In addition to
propositional and predicate logic, it has a particularly thorough treatment
of temporal logic and model checking. In fact, the book is quite remarkable
in how much of this material it is able to cover: linear and branching time
temporal logic, explicit state model checking, fairness, the basic fixpoint
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theorems for computation tree logic (CTL), even binary decision diagrams
and symbolic model checking. Moreover, this material is presented at a level
that is accessible to undergraduate and beginning graduate students. Nu-
merous problems and examples are provided to help students master the
material in the book. Since both Huth and Ryan are active researchers in
logics of programs and program verification, they write with considerable
authority.

In summary, the material in this book is up-to-date, practical, and ele-
gantly presented. The book is a wonderful example of what a modern text
on logic for computer science should be like. I recommend it to the reader
with greatest enthusiasm and predict that the book will be an enormous
success.

(This foreword is re-printed in the second edition with its author’s permis-
sion.)



Preface to the second edition

Our motivation for (re)writing this book

One of the leitmotifs of writing the first edition of our book was the obser-
vation that most logics used in the design, specification and verification of
computer systems fundamentally deal with a satisfaction relation

ME¢

where M is some sort of situation or model of a system, and ¢ is a specifi-
cation, a formula of that logic, expressing what should be true in situation
M. At the heart of this set-up is that one can often specify and implement
algorithms for computing F. We developed this theme for propositional,
first-order, temporal, modal, and program logics. Based on the encourag-
ing feedback received from five continents we are pleased to hereby present
the second edition of this text which means to preserve and improve on the
original intent of the first edition.

What's new and what’s gone

Chapter 1 now discusses the design, correctness, and complexity of a SAT
solver (a marking algorithm similar to Stalmarck’s method [SS90]) for full
propositional logic.

Chapter 2 now contains basic results from model theory (Compactness
Theorem and Lowenheim—Skolem Theorem); a section on the transitive clo-
sure and the expressiveness of existential and universal second-order logic;
and a section on the use of the object modelling language Alloy and its anal-
yser for specifying and exploring under-specified first-order logic models with
respect to properties written in first-order logic with transitive closure. The
Alloy language is executable which makes such exploration interactive and
formal.
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Chapter 3 has been completely restructured. It now begins with a discus-
sion of linear-time temporal logic; features the open-source NuSMV model-
checking tool throughout; and includes a discussion on planning problems,
more material on the expressiveness of temporal logics, and new modelling
examples.

Chapter 4 contains more material on total correctness proofs and a new
section on the programming-by-contract paradigm of verifying program cor-
rectness.

Chapters 5 and 6 have also been revised, with many small alterations and
corrections.

The interdependence of chapters and prerequisites

The book requires that students know the basics of elementary arithmetic
and naive set theoretic concepts and notation. The core material of Chap-
ter 1 (everything except Sections 1.4.3 to 1.6.2) is essential for all of the
chapters that follow. Other than that, only Chapter 6 depends on Chapter 3
and a basic understanding of the static scoping rules covered in Chapter 2 -
although one may easily cover Sections 6.1 and 6.2 without having done
Chapter 3 at all. Roughly, the interdependence diagram of chapters is

WWW page

This book is supported by a Web page, which contains a list of errata;
text files for all the program code; ancillary technical material and links;
all the figures; an interactive tutor based on multiple-choice questions;
and details of how instructors can obtain the solutions to exercises in
this book which are marked with a . The URL for the book’s page
is www.cs.bham.ac.uk/research/lics/. See also www.cambridge.org/
052154310x
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Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a

machine.
Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must be
the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next

one.
Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually
has the same structure as the argument of the previous example! All we have

1



