% |3 R hB 1 FE
e

ER R EBE
RORESHE

(RIZhR - SB2hR)

Michael Huth and Mark Ryan

second edition | LOgIC in Computer science

Modelling and Reasoning about Systems

4

Michael Huth
R FEFR
Mark Ryan &

B X

ERT RN RS
RGRESRE

<9Q3ZR& HE2hR)

ogic in Computer Scienc

,}Modeﬂmg and Reééonmg about Systems ;

Michaﬁ?l Huth
o e EL
9 Mark Ayan &

_* | BRCLLES

Michael Huth and Mark Ryan: Logic in Computer Science: Modelling and Reasoning
about Systems, Second Edition (ISBN 0-521-54310-X).

Originally published by Cambridge University Press in 2004.

This reprint edition is published with the permission of the Syndicate of the Press of the
University of Cambridge, Cambridge, England.

Copyright © 2004 by Cambridge University Press.

This edition is licensed for distribution and sale in the People’s Republic of China only,

excluding Hong Kong, Taiwan and Macao and may not be distributed and sold elsewhere.

A A5 SRR SRR AR H R

A3 SCRZEN AR i 35 [G BF K 28 R AR AU AR

SR AURAES A RSMEREN (FAREFEFE. 58, BRITHBX) #HEXT,
LTI A5 H R LA T R ABLIE AT 24

BIRE, BRER.
FHERME SRTREEINEEH

FHRNZEIZS: B 01-2005-1853

EHEMR&BE (CIP) ¥iE

mE R FREEZE: REEESHME (R - #2k) /7 (X) AR
(Huth, M.) %%, —doxt: AU Tk iihRst, 2005.4

(2 MIEIRA5E)

F4E L. Logic in Computer Science: Modelling and Reasoning about Systems, Second
Edition

ISBN 7-111-16053-3

I 0.8 WM.HENBS-3E3 V. TP3
o E R A B BECIPE IR+ (2005) 30069725

FUAE Tl R kst misk 77 0% kAb22 WBECHAS 100037)
wERE BiRE

JLEURAE A ENRIA RR A RENR - HiieBIEb st R ITR R T
2005484 1 LR | ZRENRI

787mm x 1092mm 1/16 - 27.75E2k

EN%: 0001-3 000 #

Efr: 49.00¢

JURAAS, A e, BT, SRET, ALRATHINH
Ak sek: (010) 68326294

HhRE BI1E

NEE LA, R KOBFREMIE SRR FE R, L EREDRB2ENS
AGURHLE T 2T RIS, WIERXFERIES, [EXEEEBBARRBRISTLEHZRKE
. FRSUNGE. 7ERDLCRIERY, XEMS LR EEFRERBEFERE S, HEH%EF T
PIVF 2 2 AL S [R] Er AL BHAF FO B RO Beni £, b= M S Mt e, AR TIHF%
W, LB T E2ARMEE, BEEEANE, XaFaEE M, KNEFTSRE AN
L T R

4, E2REEMREIUEZD T, REMHEL= LR BRE, T WAABTERA S
BET. XA HREILEE R R EEAVGE, bRk mELEMPBIRAeKETEE LD
HHERE. AREGSHEREREREE. M ARROHBRT, EH%EKERELT
BALA 2 R RE L4 BUE M S M I A I 2 HE B L 2. Wik, S - HEMESE T
BALEM AN RE AT F LN L BERROHEDER. bR SHFEM. BiREEYH
B KPRV HZH.

LA Tl HAR e BB S B A R A R R EIRS “HREABEMS ™. F19984E T 14 .
EEAERBETHFEARET#EE. BERIIMBEM L. 23 ILENFIME D, RIY
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ§ it 5 2 & B ER 2\ & 87 7B
FFRIATERR . NENBLA K E f 8kt h B [Tanenbaum, Stroustrup, Kernighan, Jim
GrayF NI A KK — A MR, DL THENBEAS" HRRER . SikE%3. 5 kE
. KEEOSUEMHE, WIEER T X ZENBR AR,

TFRALFHENET BIHR DRSS T BN EER R TR, ENMT R AR T by
HERIHE T . B ANRES 3 AR T BRI R BC A TV i B 15 600 P o K 4 56 7 B0/ S 70 o 6]
HfEHE, ARETHARBIPERER. €4, “HEIEENS LM T E A,
LA RE PR T RFW I, HHFEERRAAEREMME S BE, H— S
JTERRRAT T T R ELAMERE.

B % R BRI 90 0 S8 S R B S SR R It B S 3t L S B A 1 38 oK o i
HEA—THOG B, Ak, EEATFMASIEBRMBDE, £ “EEHE" HEaH 2R
AR = ARSI LR BR “TFBHLREN " 2 0h, STBCENRRMO BRI &k FF R M
HHERRBET 5 R, SIS EBTHIHFEH S “Schaum’s Outlines” RYNHMK “2ELL
IR R RN T RIEX Z BB . BB A T 47 i 2 B R S . &
EAEBE T ERELR. LK. k. BEBRE KRS, EHAY. FiEs@As.
MK BT R, PEBHERE. BRE T AY. BRSEAYE. PEARAS. ki
RLZERIR K. dbmhBi R, rPilik . MIREB T A%, A=, Wb T2, b [H

iv

K5 BR2MWPFNE.OFEENE S RZNMBHIAE T BN S S L2 EHR “F
KIBFENR”, ARMRBALEBE R MR YEE.

X ZENBRRNBE SR ORI ERMREMN S E, ARANESEKRTHE AT
BFESITED. HhiF 2830 4M. 1 T., Stanford, U.C. Berkeley, C. M. U. -5 & i
K%EFRA. NS TRFRT. BIBE&w. BERL. HBIGEREY. BIEE. i3
. ROETE. BEY. AE5NE. BEECESERNRSTEILE %8 FiR080IRE,
mE#FRFG—ANEBIESRIIEZTE. ANHL-TENAR. FRNCHESHRNILE
Pk . EXERABENZMAENIRSIZ T, RZELBE BB S B f s
MAE.

PBURHITE® . BB . —RWiEE. PRIVER. BEN%HE, XEREGRINVE
BAHTRENRIE, BRGEFREERE, MTRBOBLERRIEIX L% B E
). BRI R R R BT REEAR S RO A L0 2% R 2 U i & 3 3% 0100 T 73R
B THRIE, BAIBER G T

H, B {E: hzedu@hzbook.com
BCAHIE: (010) 68995264

R ZMbhk: AL s i PRI Rt 1
MR R ZRA%: 100037

EXEBESER

(et EC 22 i G)
i W URL S S
5 7 INEF
FIHE 05)}
it AR R iE & 1A
B JE 4 3
#5 E R ze18 R
o & R
/%ZT ok ﬁ(‘ ?;i

1% £ A

e) X

AL AR

-
=

PR

b i1
S QLA
FRF
M o) 2%
AL o
LEST
A

)

3

2 £k
R H
b5
RCE
W
/7R
A28 3%

Foreword to the first edition

Edmund M. Clarke

FORE Systems Professor of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Formal methods have finally come of age! Specification languages, theorem
provers, and model checkers are beginning to be used routinely in industry.
Mathematical logic is basic to all of these techniques. Until now textbooks
on logic for computer scientists have not kept pace with the development
of tools for hardware and software specification and verification. For exam-
ple, in spite of the success of model checking in verifying sequential circuit
designs and communication protocols, until now I did not know of a sin-
gle text, suitable for undergraduate and beginning graduate students, that
attempts to explain how this technique works. As a result, this material is
rarely taught to computer scientists and electrical engineers who will need to
use it as part of their jobs in the near future. Instead, engineers avoid using
formal methods in situations where the methods would be of genuine benefit
or complain that the concepts and notation used by the tools are compli-
cated and unnatural. This is unfortunate since the underlying mathematics
is generally quite simple, certainly no more difficult than the concepts from
mathematical analysis that every calculus student is expected to learn.
Logic in Computer Science by Huth and Ryan is an exceptional book.
I was amazed when I looked through it for the first time. In addition to
propositional and predicate logic, it has a particularly thorough treatment
of temporal logic and model checking. In fact, the book is quite remarkable
in how much of this material it is able to cover: linear and branching time
temporal logic, explicit state model checking, fairness, the basic fixpoint

viil Foreword to the first edition

theorems for computation tree logic (CTL), even binary decision diagrams
and symbolic model checking. Moreover, this material is presented at a level
that is accessible to undergraduate and beginning graduate students. Nu-
merous problems and examples are provided to help students master the
material in the book. Since both Huth and Ryan are active researchers in
logics of programs and program verification, they write with considerable
authority.

In summary, the material in this book is up-to-date, practical, and ele-
gantly presented. The book is a wonderful example of what a modern text
on logic for computer science should be like. I recommend it to the reader
with greatest enthusiasm and predict that the book will be an enormous
success.

(This foreword is re-printed in the second edition with its author’s permis-
sion.)

Preface to the second edition

Our motivation for (re)writing this book

One of the leitmotifs of writing the first edition of our book was the obser-
vation that most logics used in the design, specification and verification of
computer systems fundamentally deal with a satisfaction relation

ME¢

where M is some sort of situation or model of a system, and ¢ is a specifi-
cation, a formula of that logic, expressing what should be true in situation
M. At the heart of this set-up is that one can often specify and implement
algorithms for computing F. We developed this theme for propositional,
first-order, temporal, modal, and program logics. Based on the encourag-
ing feedback received from five continents we are pleased to hereby present
the second edition of this text which means to preserve and improve on the
original intent of the first edition.

What's new and what’s gone

Chapter 1 now discusses the design, correctness, and complexity of a SAT
solver (a marking algorithm similar to Stalmarck’s method [SS90]) for full
propositional logic.

Chapter 2 now contains basic results from model theory (Compactness
Theorem and Lowenheim—Skolem Theorem); a section on the transitive clo-
sure and the expressiveness of existential and universal second-order logic;
and a section on the use of the object modelling language Alloy and its anal-
yser for specifying and exploring under-specified first-order logic models with
respect to properties written in first-order logic with transitive closure. The
Alloy language is executable which makes such exploration interactive and
formal.

X Preface to the second edition

Chapter 3 has been completely restructured. It now begins with a discus-
sion of linear-time temporal logic; features the open-source NuSMV model-
checking tool throughout; and includes a discussion on planning problems,
more material on the expressiveness of temporal logics, and new modelling
examples.

Chapter 4 contains more material on total correctness proofs and a new
section on the programming-by-contract paradigm of verifying program cor-
rectness.

Chapters 5 and 6 have also been revised, with many small alterations and
corrections.

The interdependence of chapters and prerequisites

The book requires that students know the basics of elementary arithmetic
and naive set theoretic concepts and notation. The core material of Chap-
ter 1 (everything except Sections 1.4.3 to 1.6.2) is essential for all of the
chapters that follow. Other than that, only Chapter 6 depends on Chapter 3
and a basic understanding of the static scoping rules covered in Chapter 2 -
although one may easily cover Sections 6.1 and 6.2 without having done
Chapter 3 at all. Roughly, the interdependence diagram of chapters is

WWW page

This book is supported by a Web page, which contains a list of errata;
text files for all the program code; ancillary technical material and links;
all the figures; an interactive tutor based on multiple-choice questions;
and details of how instructors can obtain the solutions to exercises in
this book which are marked with a . The URL for the book’s page
is www.cs.bham.ac.uk/research/lics/. See also www.cambridge.org/
052154310x

Acknowledgements

Many people have, directly or indirectly, assisted us in writing this book.
David Schmidt kindly provided serveral exercises for Chapter 4. Krysia
Broda has pointed out some typographical errors and she and the other
authors of [BEKV94] have allowed us to use some exercises from that book.
We have also borrowed exercises or examples from [Hod77] and [FHMV95].
Susan Eisenbach provided a first description of the Package Dependency
System that we model in Alloy in Chapter 2. Daniel Jackson make very
helpful comments on versions of that section. Zena Matilde Ariola, Josh
Hodas, Jan Komorowski, Sergey Kotov, Scott A. Smolka and Steve Vickers
have corresponded with us about this text; their comments are appreciated.
Matt Dwyer and John Hatcliff made useful comments on drafts of Chap-
ter 3. Kevin Lucas provided insightful comments on the content of Chapter
6, and notified us of numerous typographical errors in several drafts of the
book. Achim Jung read several chapters and gave useful feedback.

Additionally, a number of people read and provided useful comments on
several chapters, including Moti Ben-Ari, Graham Clark, Christian Haack,
Anthony Hook, Roberto Segala, Alan Sexton and Allen Stoughton. Numer-
ous students at Kansas State University and the University of Birmingham
have given us feedback of various kinds, which has influenced our choice and
presentation of the topics. We acknowledge Paul Taylor’s INTEX package for
proof boxes. About half a dozen anonymous referees made critical, but con-
structive, comments which helped to improve this text in various ways. In
spite of these contributions, there may still be errors in the book, and we
alone must take responsibility for those.

Added for second edition ,
Many people have helped improve this text by pointing out typos and
making other useful comments after the publication date. Among them,

Xil Acknowledgements

we mention Wolfgang Ahrendt, Yasuhiro Ajiro, Torben Amtoft, Stephan
Andrei, Bernhard Beckert, Jonathan Brown, James Caldwell, Ruchira Datta,
Amy Felty, Dimitar Guelev, Hirotsugu Kakugawa, Kamran Kashef, Markus
Kroétzsch, Jagun Kwon, Ranko Lazic, David Makinson, Alexander Miczo,
Aart Middeldorp, Robert Morelli, Prakash Panangaden, Aileen Paraguya,
Frank Pfenning, Shekhar Pradhan, Koichi Takahashi, Kazunori Ueda,
Hiroshi Watanabe, Fuzhi Wang and Reinhard Wilhelm.

Contents

Foreword to the first edition page vii
Preface to the second edition x
Acknowledgements xi
1 Propositional logic 1
1.1 Declarative sentences 2
1.2 Natural deduction 5
1.2.1 Rules for natural deduction 6
1.2.2 Derived rules 23
1.2.3 Natural deduction in summary 26
1.2.4 Provable equivalence 29

1.2.5 An aside: proof by contradiction 29

1.3 Propositional logic as a formal language 31
1.4 Semantics of propositional logic 36
1.4.1 The meaning of logical connectives 36
1.4.2 Mathematical induction 40
1.4.3 Soundness of propositional logic 45

1.4.4 Completeness of propositional logic 49

1.5 Normal forms 53
1.5.1 Semantic equivalence, satisfiability and validity 54

1.5.2 Conjunctive normal forms and validity 58

1.5.3 Horn clauses and satisfiability 65

1.6 SAT solvers 68
1.6.1 A linear solver 69
1.6.2 A cubic solver 72

1.7 Exercises 78
1.8 Bibliographic notes 91
2 Predicate logic 93

2.1 The need for a richer language 93

X1V

2.3

2.4

2.5
2.6

2.7

2.8
2.9

Contents

Predicate logic as a formal language
2.2.1 Terms

2.2.2 Formulas

2.2.3 Free and bound variables
2.2.4 Substitution

Proof theory of predicate logic
2.3.1 Natural deduction rules
2.3.2 Quantifier equivalences
Semantics of predicate logic

2.4.1 Models

2.4.2 Semantic entailment

2.4.3 The semantics ot equality
Undecidability of predicate logic
Expressiveness of predicate logic
2.6.1 Existential second-order logic
2.6.2 Universal second-order logic
Micromodels of software

2.7.1 State machines

2.7.2 Alma - re-visited

2.7.3 A software micromodel
Exercises

Bibliographic notes

Verification by model checking

3.1
3.2

3.3

3.4

Motivation for verification
Linear-time temporal logic
3.2.1 Syntax of LTL
3.2.2 Semantics of LTL

3.2.3 Practical patterns of specifications

3.2.4 Important equivalences between LTL formulas
3.2.5 Adequate sets of connectives for LTL

Model checking: systems, tools, properties

3.3.1 Example: mutual exclusion
3.3.2 The NuSMV model checker
3.3.3 Running NuSMV

3.3.4 Mutual exclusion revisited
3.3.5 The ferryman

3.3.6 The alternating bit protocol
Branching-time logic

3.4.1 Syntax of CTL

99
100
102
104
107
107
117
122
123
129
130
131
136
139
140
141
142
146
148
157
170
172
172
175
175
178
183
184
186
187
187
191
194
195
199
203
207
208

3.5

3.6

3.7

3.8
3.9

Contents

3.4.2 Semantics of CTL

3.4.3 Practical patterns of specifications

3.4.4 Important equivalences between CTL formulas
3.4.5 Adequate sets of CTL connectives

CTL* and the expressive powers of LTL and CTL
3.5.1 Boolean combinations of temporal formulas in CTL
3.5.2 Past operators in LTL

Model-checking algorithms

3.6.1 The CTL model-checking algorithm

3.6.2 CTL model checking with fairness

3.6.3 The LTL model-checking algorithm

The fixed-point characterisation of CTL

3.7.1 Monotone functions

3.7.2 The correctness of SATgg

3.7.3 The correctness of SATgy

Exercises

Bibliographic notes

Program verification

4.1
4.2

4.3

4.4
4.5
4.6
4.7

Why should we specify and verify code?
A framework for software verification
4.2.1 A core programming language
4.2.2 Hoare triples

4.2.3 Partial and total correctness

4.2.4 Program variables and logical variables
Proof calculus for partial correctness
4.3.1 Proof rules

4.3.2 Proof tableaux

4.3.3 A case study: minimal-sum section
Proof calculus for total correctness
Programming by contract

Exercises

Bibliographic notes

Modal logics and agents

5.1
9.2

5.3

Modes of truth

Basic modal logic

5.2.1 Syntax

5.2.2 Semantics

Logic engineering _

5.3.1 The stock of valid formulas

XV

211
215
215
216
217
220
221
221
222
230
232
238
240
242
243
245
254
256
257
258
259
262
265
268
269
269
273
287
292
296
299
304
306
306
307
307
308
316
317

XVi

5.4
9.9

2.6
5.7

Contents

5.3.2 Important properties of the accessibility relation
5.3.3 Correspondence theory

5.3.4 Some modal logics

Natural deduction

Reasoning about knowledge in a multi-agent system
5.5.1 Some examples

5.5.2 The modal logic KT45"

5.5.3 Natural deduction for KT45"

5.5.4 Formalising the examples

Exercises

Bibliographic notes

Binary decision diagrams

6.1

6.2

6.3

6.4

6.5
6.6

Representing boolean functions

6.1.1 Propositional formulas and truth tables
6.1.2 Binary decision diagrams

6.1.3 Ordered BDDs

Algorithms for reduced OBDDs

6.2.1 The algorithm reduce

6.2.2 The algorithm apply

6.2.3 The algorithm restrict

6.2.4 The algorithm exists

6.2.5 Assessment of OBDDs

Symbolic model checking

6.3.1 Representing subsets of the set of states
6.3.2 Representing the transition relation
6.3.3 Implementing the functions pre; and prey
6.3.4 Synthesising OBDDs

A relational mu-calculus

6.4.1 Syntax and semantics

6.4.2 Coding CTL models and specifications
Exercises

Bibliographic notes

Bibliography
Indez

320
322
326
328
331
332
335
339
342
350
356
358
358
359
361
366
372
372
373
377
377
380
382
383
385
387
387
390
390
393
398
413
414
418

1

Propositional logic

The aim of logic in computer science is to develop languages to model the
situations we encounter as computer science professionals, in such a way
that we can reason about them formally. Reasoning about situations means
constructing arguments about them; we want to do this formally, so that
the arguments are valid and can be defended rigorously, or executed on a

machine.
Consider the following argument:

Example 1.1 If the train arrives late and there are no taxis at the station,
then John is late for his meeting. John is not late for his meeting. The train
did arrive late. Therefore, there were taxis at the station.

Intuitively, the argument is valid, since if we put the first sentence and
the third sentence together, they tell us that if there are no taxis, then John
will be late. The second sentence tells us that he was not late, so it must be
the case that there were taxis.

Much of this book will be concerned with arguments that have this struc-
ture, namely, that consist of a number of sentences followed by the word
‘therefore’ and then another sentence. The argument is valid if the sentence
after the ‘therefore’ logically follows from the sentences before it. Exactly
what we mean by ‘follows from’ is the subject of this chapter and the next

one.
Consider another example:

Example 1.2 If it is raining and Jane does not have her umbrella with her,
then she will get wet. Jane is not wet. It is raining. Therefore, Jane has her
umbrella with her.

This is also a valid argument. Closer examination reveals that it actually
has the same structure as the argument of the previous example! All we have

1

