Claudio Ferretti
Giancarlo Mauri
Claudio Zandron (Eds.)

LNCS 3384

DNA Computing

10th International Workshop
on DNA Computing, DNA10
Milan, Italy, June 2004, Revised Selected Papers

@ Springer

Claudio Ferretti Giancarlo Mauri
Claudio Zandron (Eds.)

DNA Computing

10th International Workshop

on DNA Computing, DNA10
Milan, Italy, June 7-10, 2004
Revised Selected Papers

@ Springer

Volume Editors

Claudio Ferretti

Giancarlo Mauri

Claudio Zandron

Universita degli Studi di Milano-Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione
via Bicocca degli Arcimboldi 8, 20126, Milano, Italy
E-mail: {ferretti,mauri,zandron} @disco.unimib.it

Library of Congress Control Number: 2005927141

CR Subject Classification (1998): F.1, F2.2,1.2.9,].3

ISSN 0302-9743
ISBN-10 3-540-26174-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26174-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11493785 06/3142 543210

Preface

Biomolecular computing has emerged as an interdisciplinary field that draws to-
gether chemistry, computer science, mathematics, molecular biology, and physics.
Our knowledge of DNA nanotechnology and biomolecular computing increases
dramatically with every passing year. The International Meeting on DNA Com-
puting has been a forum where scientists with different backgrounds, yet shar-
ing a common interest in biomolecular computing, meet and present their latest
results. Continuing this tradition, the 10th International Meeting on DNA Com-
puting (DNA10) focused on the current experimental and theoretical results with
the greatest impact.

The meeting took place at the University of Milano-Bicocca, Milan, Italy,
from June 7 to June 10, 2004, and it was organized by the University of Milano-
Bicocca and the Department of Informatics of the University of Milano-Bicocca.
Papers and poster presentations were sought in all areas that relate to biomolecu-
" lar computing, including (but not restricted to): demonstrations of biomolec:lar
computing (using DNA and/or other molecules), theoretical models of biomolec-
ular computing, biomolecular algorithms, computational processes in vitro and in
vivo, analysis and theoretical models of laboratory techniques, biotechnological
and other applications of DNA computing, DNA nanostructures, DNA devices
such as DNA motors, DNA error evaluation and correction, in vitro evolution,
molecular design, self-assembled systems, nucleic acid chemistry, and simulation
tools.

Authors were asked to choose between two different tracks:

Track A — Full paper, for authors who wished to submit a full paper for
presentation at DNA10 (oral or poster), and publication in the conference pro-
ceedings.

Track B — One-page abstract, for authors submitting experimental results,
and who planned to submit their manuscript to a scientific journal, rather than
publish it in the conference proceedings.

We received 67 submissions in track A and 27 in track B. Among them,
30 papers were selected for oral presentation. About 140 people attended the
meeting.

The first day of the meeting, June 7, 2004, was dedicated to the following
tutorials: N. Pavelka (Univ. of Milano-Bicocca), “Gene Expression Studies Using
Microarrays,” H.J. Hoogeboom (Leiden University), “Basic Concepts of Com-
puting for Biologists,” C. Henkel (Leiden University), “Basic Molecular Biology
for Nonspecialists,” and T.H. LaBean (Duke University), “Self-Assembly.”

The next three days were devoted to invited plenary lectures and regular
oral presentations. The invited plenary lectures were by K. Benenson (Weiz-
mann Institute of Science, Israel), “An Autonomous Molecular Computer for
Logical Control of Gene Expression,” C. Flamm (University of Vienna, Aus-

VI Preface

tria), “Computational Design of Multi-stable Nucleic Acid Sequences,” G. Paun
(Institute of Mathematics of the Romanian Academy, Romania), “Membrane
Computing — Power and Efficiency. An Overview,” J. Reif (Duke University,
USA), “DNA-Based Nano-engineering: DNA and Its Enzymes as the Engines of
Creation at the Molecular Scale,” and W.M. Shih (Harvard University, USA),
“Clonable DNA Nanotechnology.”

The editors would like to thank all contributors to and participants in the
DNA10 conference, the Program Committee (A. Carbone, J. Chen, N. Jonoska,
L. Kari, C. Mao, G. Mauri, G. Paun, J. Rose, P. Rothemund, Y. Sakakibara,
N. Seeman, E. Shapiro, L. Smith, R. Weiss, and H. Yan), and the external
reviewers. .

Finally, we wish to thank Brainspark ple. Comerson, the Department of In-
formatics, Systems and Communications of the University of Milano-Bicocca,
Etnoteam, the European Commission, STMicroelectronics, and the University
of Milano-Bicocca for the support and sponsorship of the conference.

Tanuary 2005 Claudio Ferretti,
Giancarlo Mauri,
Claudio Zandron

Table of Contents

Computing by Observing Bio-systems: The Case of Sticker Systems
Artiom Alhazov, Matteo Cavaliere. 1

DNA-Based Computation Times
Yuliy Baryshnikov, Ed Coffman, Petar Momcilovié 14

Computing Beyond the Turing Limit Using the H Systems
Cezar Campeanu, Andrei Paun 24

Biomolecular Implementation of Computing Devices with Unbounded
Memory
Matteo Cavaliere, NataSa Jonoska, Sivan Yogev, Ron Piran,
Fhud Keinan, Nadrian C. Seeman 35

. Characterization of Non-crosshybridizing DNA Oligonucleotides
Manufactured In Vitro

Junghuei Chen, Russell Deaton, Max H. Garzon, Jin Woo Kim,

David Wood, Hong Bi, Dylan Carpenter, Yu-Zhen Wang 50

Error-Free Self-assembly Using Error Prone Tiles
Ho-Lin Chen, Ashish Goel i, 62

On the Computational Complexity of P Automata
Erzsébet Csuhaj-Varji, Oscar H. Ibarra, Gyorgy Vaszil 76

A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric
for DNA Codes
Arkadii G. D’yachkov, Anthony J. Macula, Wendy K. Pogozelskz,
Thomas E. Renz, Vyacheslav V. Rykov, David C. Torney 90

DNA Extraction by XPCR
Giuditta Franco, Cinzia Giagulli, Carlo Laudanna,
Vincenzo Manca 104

A Method of Error Suppression for Self-assembling DNA Tiles
Kenichi Fujibayashi, Satoshi Murata 113

Using Automated Reasoning Systems on Molecular Computing
Carmen Graciani Diaz, Mario J. Pérez-Jiménez 128

VIII Table of Contents

Parallelism in Gene Assembly
Tero Harju, Chang Li, lon Petre, Grzegorz Rozenberg 138

Splicing Systems for Universal Turing Machines
Tero Harju, Maurice Margenstern uiiiiieonn.. 149

Application of Mismatch Detection Methods in DNA Computing
Christiaan V. Henkel, Grzegorz Rozenberg, Herman P. Spaink 159

Bond-Free Languages: Formalizations, Maximality and Construction
Methods .
Lila Kari, Stavros Konstantinidis, Petr Sosik 169

Preventing Undesirable Bonds Between DNA Codewords
Lila Kari, Stavros Konstantinidis, Petr Sosik 182

Testing Structure Freeness of Regular Sets of Biomolecular Sequences
Satoshi Kobayashi .: e swiss sas cusmsnssmens smsinsms suivme w5 $as 192

Minimum Basin Algorithm: An Effective Analysis Technique for DNA
Energy Landscapes
Mitsuhiro Kubota, Masami Hagiyacoviiinuiunnnon.. 202

Efficient Initial Pool Generation for Weighted Graph Problems Using
Parallel Overlap Assembly
Ji Youn Lee, Hee-Woong Lim, Suk-In Yoo, Byoung-Tak Zhang,
Toi Hywn Park : oo oovinims onvissssmssosiossnsais anlish sdio st sudsnes 215

Partial Words for DNA Coding
Peter Leupold 0 224

Accepting Hybrid Networks of Evolutionary Processors
Maurice Margenstern, Victor Mitrana, Mario J. Pérez-Jiménez 235

Building the Components.for a Biomolecular Computer
Clint Morgan, Darko Stefanovic, Cristopher Moore,
Milan N. Stojanovic 247

Methods for Manipulating DNA Molecules in a Micrometer Scale Using
Optical Techniques
Yusuke Ogura, Takashi Kawakami, Fumika Sumiyama, Satoru Irie,

Akira Sugama; Jui TaBid0 o ons sovme sasmsvas isies smu 0msss s 08 ALeH 258

From Cells to Computers: Membrane Computing — A Quick Overview
Gheorghe Paun 268

Table of Contents IX

The Capacity of DNA for Information Encoding
Vinhthuy Phan, Max H. Garzonc.cc.uoi.. .. 281

Compact Error-Resilient Computational DNA Tiling Assemblies
John H. Reif, Sudheer Sahu, Peng Yin 293

Toward “Wet” Implementation of Genetic Algorithm for Protein
Engineering
Kensaku Sakamoto, Masayuki Yamamura, Hiroshi Someya 308

Programmable Control of Nucleation for Algorithmic Self-assembly
Rebecca Schulman, Erik Winfree 319

DNA Hybridization Catalysts and Catalyst Circuits
Georg Seelig, Bernard Yurke, Erik Winfree 329

Complexity of Self-assembled Shapes
David Soloveichik, Erik Winfree 344

Aqueous Computing with DNA Hairpin-Based RAM
Naoto Takahashi, Atsushi Kameda, Masahito Yamamoto,
Azuma Ohuchi 355

A Programmable Molecular Computer in Microreactors
Danny van Noort 365

Combinatorial Aspects of Minimal DNA Expressions
Rudy van Vliet, Hendrik Jan Hoogeboom, Grzegorz Rozenberg 375

A Design for Cellular Evolutionary Computation by Using Bacteria
Kenichi Wakabayashi, Masayuk: Yamamura 389

An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based
DNA Nanomachine
Hanwen Yan 399

Designs of Autonomous Unidirectional Walking DNA Devices
Peng Yin, Andrew J. Turberfield, John H. Reif 410

Design of an Autonomous DNA Nanomechanical Device Capable of

Universal Computation and Universal Translational Motion
Peng Yin, Andrew J. Turberfield, Sudheer Sahu, John H. Reif 426

A Clocked DNA-Based Replicator
Bernard Yurke, David Zhang i, 445

X Table of Contents

A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern

Classifiers

Byoung-Tak Zhang, Ha-Young Jang

Author Index

Computing by Observing Bio-systems:
The Case of Sticker Systems

Artiom Alhazov!? and Matteo Cavaliere?

I Research Group on Mathematical Linguistics,
Rovira i Virgili University,
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.es
2 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,
Str. Academiei 5, Chisinau, MD 2028, Moldova
artiom@math.md
3 Department of Computer Science and Artificial Intelligence,

University of Sevilla,

Avda. Relna Mercedes s/n, 41012 Sevilla, Spain
martew@inwind. it

Abstract. A very common approach in chemistry and biology is to ob-
serve the progress of an experiment, and take the result of this observa-
tion as the final output. Inspired by this, a new approach to computing,
called system/observer, was introduced in [3].

In this paper we apply this strategy to sticker systems, [8,11]. In
particular we use finite automata (playing the role of observer) watching
the “evolution” of a sticker system and translating such “evolution” into
a readable output.

We show that this way of “computing by observing” brings us results
quite different from the ones obtained when considering sticker systems in
the standard manner. Even regular simple sticker systems (whose gen-
erative power is subregular) become universal when considered in this
new framework. The significance of these results for DNA computing
(by sticker systems) is briefly discussed.

1 Introduction: Observing Sticker Systems

A usual procedure in chemistry and biology is to observe the progress of an
experiment, taking the result of observation as the output. Inspired by this a
new approach to computing, called system/observer, has been introduced in [3].

There it was shown how a computing device can be constructed using two less
powerful systems: the first one, which is a mathematical model of a biological
system, “lives” (evolves), passing from one configuration to the next, producing
in this way a “behavior”; the second system, called “observer”, is placed outside
and watches the biological system. Following a set of specific rules the observer
translates the behavior of the underlying system into a “readable” output: it

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 1-13, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 A. Alhazov and M. Cavaliere

associates a label to each configuration of the bio-system and writes these labels
according to their chronological order onto an output tape; in this way the
pair composed by the biological system and the observer can be considered a
computing (generating) device, as described in Figure 1.

This idea recalls a discussion by G. Rozenberg and A. Salomaa in [12]. They
remarked that the result of a computation can be seen as already present in
nature: we only need to look (in an appropriate way) at it. In their case this
observation is made applying a (generalized) finite state sequential transducer to
the so-called twin-shuffle language, a language closely related to the structure of
DNA moolecules. In our case the observer is applied not only to the final result,
but to the entire evolution of the system. In other words, in our architecture,
the computation is made by observing the full “life” of a biological system.

Until now, the system/observer architecture has been applied in different
frameworks; in the first work, [3], the evolution of a membrane system (a formal
model inspired by the functioning of the living cells) has been observed. In
that paper it has been shown how the system composed of a “not powerful”
membrane-system (with context-free power) and a finite state automaton in the
role of observer, is universal. This can be considered the first (surprising) “hint”
of the fact that computing by observing is a very powerful approach.

Computing
(Output Observer Device
/\ lObservation

Sticker
System

Fig. 1. Conceptual view of a sticker-system/observer architecture

In [5], a finite automaton observes the evolution of “marked” strings of a
splicing system (a formal system inspired by the recombination of DNA strands
that happens under the action of restriction enzymes). Also in this case, the
observation adds much power to the considered bio-system. In particular, it has
been shown that just observing the evolution of marked strings in a splicing
system (using finite axioms and rules) it is even possible to obtain non-recursive
languages (we recall that the generative power of this class of splicing systems,
considered in the standard way, is subregular).

Finally, a more general application of the system/observer framework has
been presented in [4]: the “evolution” of a grammar has been observed using a
finite automaton. In this case, the universality is obtained using a finite state
automaton observing a context-free grammar.

Here, we investigate observable sticker-systems, where the bio-system is a
sticker system.

Computing by Observing Bio-systems: The Case of Sticker Systems 3

The main reason for investigating sticker systems in the system/observer
framework comes from the fact that, using a recent lab-technique named FRET,
[9], it is possible, under biologically relevant conditions, to observe the dynamics
of a single molecule. Therefore we believe that it is extremely interesting to
investigate how much we can compute just by observing the evolution of DNA
molecules and sticker systems might represent an optimal way to formalize this
investigation.

Sticker systems were introduced in [8] as a formal model of the operaticn
of annealing (and ligation) operation that is largely used in DNA computing
area, since the successful experiment of L.M. Adleman in 1994, [1]. The basic
operation of a sticker system is the sticking operation that constructs double
stranded sequences out of “DNA dominoes” (polyominoes) that are sequences
with one or two sticky ends, or single stranded sequences, attaching to each other
by ligation and annealing.

The informal idea of an observable sticker system can be expressed in the
following way: an observer (for example, a microscope) is placed outside the
“test tube”, where (an unbounded number of copies of) DNA strands and DNA
dominoes are placed together. Some of these molecules are marked (for example,
with a fluorescent particle). The molecules in the solution will start to self-
assemble (to stick to each other) and, in this way, new molecules are obtained
The observer watches the evolution of the marked molecules and stores such
evolution on an external tape in a chronological order.

For each possible “evolution” of the marked molecules a certain string is
obtained. Collecting all the possible “evolutions” of such marked strands we
obtain a language.

Many different variants of sticker systems can be considered, using different
kinds of dominoes and different restrictions on the sticking operation (see details
in [11]). In this paper we consider a very restricted and simple variant of sticker
system, whose power is subregular, and we show that, when we consider such
variant in the system/observer framework, then we get much more generative
power and even universality.

2 Formal Language Pre-requisites

In what follows we suppose the reader familiar with basic notions of formal
languages (as introduced, for instance, in [13]).

We will denote a finite set (the alphabet) by V, the set of words over V' by
V*. Forxz e V¥, Pref(z) ={y € V* |z = yza,20 € V*}, Suff(z) = {ye V*|
T =z1y,z1 € V*} and Sub(z) = {y € V* | x = 21y29, 21,20 € V*} are the sets
of all prefixes, suffixes and subwords of x, respectively.

A shuffle of words x; € T} and 29 € Ty (T1'NT, = 0) isaword y € (T1UT,)*
such that hp (y) = z;, ¢ € {1,2}, where hy, are the projection morphisms:
hr,(a) = a if a € T; and A otherwise, for i € {1,2}.

By CF, CS, and RE we denote the classes of languages generated by context-
free, context-sensitive, and unrestricted grammars respectively.

4 A. Alhazov and M. Cavaliere

We shortly recall the basic notions of a conditional grammar used in the
following theorem (for more details the reader can consult [6]).

A (context-free) conditional grammar is a construct G = (N, T, P, S), where
N and T are nonterminal and terminal symbols, S is the axiom and P is a
finite set of rules of the form (A4 — «, R), where A € N, a € (NUT)* and R
is a regular language over N U T. We say that uAv = wawv if there is a rule
(A — o, R) € P such that vAv € R.

For every language L € RFE there exists a conditional grammar generating
L. Without restricting generality we can assume that the rules of the grammar
are binary (|a| < 2 for every (A — a, R) € P).

3 Preliminaries: Sticker Systems

We recall the basic notions of sticker systems. As it was already mentioned in
the introduction, sticker systems can be considered a formal (language) model
inspired by the annealing and ligation operations. The basic idea is to have
initially DNA strands, called axioms, and dominoes that are DNA strands with
sticky ends. Starting from the axioms and iteratively using the operation of
sticking, complete double stranded sequences are obtained.

The collection of all the complete double stranded sequences obtained is the
language generated by the sticker system.

Consider a symmetric relation p C V x V over V' (of complementarity).
Following [11], we associate with V' the monoid V* x V* of pairs of strings.
Because it is intended to represent DNA molecules, we also write elements

(x1,m2) € V* x V* in the form (;1> and V* x V* as (5*) We denote by
2

[“q = {{Z] | a,b € V,(a,b) € p} the set of complete double symbols, and
P

WK, (V)= L‘q is the set of the complete double-stranded sequences (complete
P

molecules) also written as [jl] , where x is the upper strand and x4 is the lower
’2
strand.
. . Vv
As in [11], we use single strands — the elements of S(V) = <‘;*> U (\ > and

the molecules with (a possible) overhang on the right, which are the elements
V *
of R,(V) = [V] S(V), from now on called well-started molecules (upper and
P
lower strand are defined as in the case of complete molecules).

Given a well started molecule u € R,(V) and a single strand v € S(V), we
recall in Figure 2 the partial operation i : R,(V)xS(V) — R,(V) of sticking, as
defined in [11]. We point out that we use a case of sticking, restricted to pasting a
single strand to the right side of a well-started molecule (with a possible overhang
on the right), corresponding to the simple regular sticker systems. Furthermore,
we define length of a single strand

Computing by Observing Bio-systems: The Case of Sticker Systems 5

HH

e I o e T
o <

[u

Fig. 2. Sticking operation

f\c (or v’ = ;\) as |u| = |u/| = |r|, and for a finite H C S(V) we say
length(H) = max{|u| | v € H}.

A (simple regular) sticker system is a construct v = (V, p, A, D), where A C
R, (V) is the (finite) set of axioms, and D C S(V) is the (finite) set of dominoes
(in this case these are single strands). Given u, w € R,(V), we write u = w iff
w = p(u,v) for some v € D. A sequence (w;)1<;<k C R,(V) is called a complete
computation if wy € A, w; = w4 for 1 <i < k and wi, € WK, (V).

The language generated by a sticker system 7y is the set of upper strands of all
complete molecules derived from the axioms. We remark the fact that the family
of languages generated by simple reqular sticker systems is strictly included in
the family of regqular languages (see [11] for the proof).

u =

4 The Observer: Automata with Singular Output

For the observer (the “microscope”) as described in the introduction we need a
device mapping DNA molecules (also incomplete) into just one symbol.
For an alphabet V| our double-symbol alphabet constructed over V is
%4

7
=[], ()0 ()
P

Therefore, following the idea also used in [3], we define a variant of finite state
automata: the states are labeled by the symbols of the output alphabet X or
with A. Any computation of the automaton produces as output the label of the
state it halts in (we are not interested in accepting computations and therefore
do not consider the final states); because the observation of a certain string
should always lead to a fixed result, we consider here only deterministic and
complete automata.

An automaton with a singular output reads a molecule (element of R, (V)
and outputs one symbol. Every well-started molecule in R,(V') C Vf is read, in
a classical way, from left to right, scanning one double symbol from V; at a time.

Formally, an automaton with singular output is a tuple O = (Z, Vy, X, 20, 9,
o) with a state set Z, input alphabet V,, initial state zp € Z, and a complete
transition function 0 as known from conventional finite automata , that maps
elements of (V; x Z) into Z. Furthermore, there is the output alphabet X and a
labeling function o : Z — Y U {A}.

6 A. Alhazov and M. Cavaliere

For a molecule w € R,(V) and an automaton O we write O(w) to indicate
such output; for a sequence wy, ..., w, of n > 1 of molecules in R,(V) we write
O(wy, ..., wy) for the string O(wy)--- O(wy,). For simplicity, in what follows,
we present only the mapping defined by the observer without giving its real
implementation as a finite automaton.

Moreover, we will also want the observer to be able to reject some words.
To do this we simply choose a special symbol | ¢ X' and an extended output
alphabet X'} = YU{L}; o then is a mapping from the set of states Z to X'| U{A}.
If a “bad” (not of interest) molecule is observed, then L is produced and thus
the entire sequence is to be rejected (hence, the criterion of rejecting is exactly
the regular language, recognized by a finite automaton like O described above,
but without output and with a single final state L). Then, using the intersection
with the set J*, it is possible to filter out the strings which contain 1.

5 Observable Sticker Systems

An observable sticker system with output alphabet X' is a construct ¢ = (v, O),
where 7 is the sticker system with alphabet V', and O is the observer with input
alphabet V; constructed over V' and with output alphabet X.

We denote the collection of all complete computations of ¢ by C(¢). The
language, over the output alphabet X', generated by an observable sticker system
¢, is defined as L(¢) = {O(s) | s € C(¢)}. If we want to filter out the words that
contain the special symbol L, then we consider the language L(¢) = L(¢) N £*.

Here is a simple example that illustrates how an observable sticker system
works. At the same time this example shows how one can construct an observ-
able sticker system generating a non regular language (despite the fact that the
power of simple regular sticker systems, when considered in the classical way, is -
subregular). Consider the following observable sticker system ¢ = (v, O):

Y= (V: {(L,C,g,t},p: {(a,t),(c,g),(t,a),(g,c)},A:{[?]},D),

p=1(5).(1)- () ()

with the observer O defined by the following mapping:

e (6)40)
= a e [(5)0()

, otherwise.

The language generated by v is L1 = {b™d" |m >n,m > 1,n > 0} ¢ REG.
Below is an example of computation of ¢ (generating bbbbdd):

Computing by Observing Bio-systems: The Case of Sticker Systems 7

Step 01 2 3 4 5 6
a a A c A A
aaced | () ()II5)]C)| (s
Moleculelalaa |aaa |aaa |aaac|aaac|aaac
tt t tt |ttt tit |tttg
Output |b|b b d d A

The idea of the system ¢ is the following: think of symbols ¢, g as “markers”.
While we stick to the current molecule either (i) or </t\> , the observer maps the

result (a molecule without markers) to b. As soon as we attach to the current
molecule a marker, the observer maps the resulting molecule to d, until the
strand with a marker is extended or until the molecule is completed.

Suppose that, when the first marker is attached, the length of the strand with
that marker is [y, the length of the other strand is [y (clearly, [; > [5), and then
the output produced so far is b'*t/2=2d. To complete the molecule by extending
the strand without the marker, we need to attach l; — I3 symbols to it, and in
this case the observer outputs d'* ~'2='\. Thus, the resulting string z consists of
1+ 1y —2bsand | — Iy d’s. Since [, > 1, the difference between the number of
b’s and the number of d’'s is [y + 1y — 2 — (I} — l3) = 2l; — 2 > 0. (Recall that in
case we attach a symbol to a string with the marker, the observer only outputs
A, so the inequality m = |z|p > |z|4 = n remains valid, and all the combinations
(m,n), m > n are possible). Hence, L(v) = L.

6 Small Observable Sticker Systems

The previous example is a preliminary “hint” on how, observing a sticker sys-
tem, we can get more power with respect to the case when sticker systems are
considered in the classical way.

The idea of the previous example can be extended and it is possible to show
that there exist observable (simple regular) sticker systems, generating non-
context-free languages, even using dominoes of length 1. In other words, the
“simple” observation of the evolution of the sticker system permit us to “jump”
from a subclass of regular language to non-context-free languages.

Theorem 1. There eiists an observable sticker system ¢ = (v,0), v = (V,p, 4,
D), length(D) =1 such that L(¢) ¢ CF.

Proof. Consider the following observable sticker system ¢ = (v, 0):

= (V = {a,b,c},p = {(ava)v(bvb)’(c’c)}7‘4 - {[Z}}7D),

p=((3)-(o)G)- 6)) ()

with the observer O defined by the following mapping,

8 A. Alhazov and M. Cavaliere

G Ry N (0]

cU*a| (U*c cU"b| (U*c cU*c
Hi= LU*a y) H =) s > He = | e
O(w)=aifwe HHUHy, O(w) =bif w e Hy U Hs, O(w) = ¢ if w € H3 U Hg,
O(w) = A, otherwise. , U={a,b}

The language generated by v is Ly =,y (azc- Pref(zc)UPref(z)- Sub(:l:c)).
Notice that Lo N U*cU*c = {aczc | 2 € U*} ¢ CF, and hence Ly ¢ CF.

. . c . .
The computation of the system starts from the axiom [c] (at this point we

can consider both strands “empty”), and pieces (“symbols”) from D can be
adjoined to the strands of the axiom during the computation. When a complete
molecule is obtained, the computation stops. To understand the explanation,
think of ¢ as a marker.

While the marker is not added to the upper strand and the lower strand is
“empty” (for molecules of the form H; or Hj), the observer outputs, one by one,
the symbols added to the upper strand. After some symbol is added to the lower
strand, the symbols added to the upper strand are not output anymore (i.e., the
observer outputs).

As soon as the system adds ¢ to the upper strand (for the molecules of the
form Hy or Hj), the observer starts to output the symbols that are adjoined to
the lower strand.

If, at some step, a symbol is added to the upper (or lower) strand to the right
of the marker ¢, then, starting from such step, the observer will not produce any
input anymore.

We can distinguish three main cases in the way the system ¢ works. We can
get the string s = zcxe by first adding the symbols of zc to the upper strand until
the marker ¢ is adjoined (letting the observer to output ze, symbol by symbol),
and then adding the symbols of zc to the lower strand (letting the observer to
output zc again). The observer cannot guarantee that, first the upper strand is
completed, and then the lower strand is completed. Therefore, strings different
from zcxe can also be generated.

The system ¢ can produce strings in the set xzc- Pref(ac) in the following case:
suppose the upper strand is completed (obtaining cxe) and the lower strand is
being completed; before it finishes, a symbol might be added to the upper strand,
at the right of the marker c. Starting from this step the observer will output A
until the computation halts. _

On the other hand, the system ¢ can also generate strings in the set Pref(z)-
Sub(xc). The symbols corresponding to a prefix of z are added to the upper
strand (the observer produces Pref(x) as output of this phase). At some step,
some symbols (i.e., a prefix of zc¢) are added to the lower strand, and during this
phase the observer outputs A. At some time the upper strand is completed and
c is added (during this phase no output is produced because the lower strand is
not empty).

