Henrik I. Christensen
Hans-Hellmut Nagel (Eds.)

TEE
B
=
(<P
11 ot
W
G
=
(<P]
]
(g°]
i
v

Survey

LNCS 3948

Cognitive Vision Systems

Sampling the Spectrum of Approaches

@ Springer



Henrik I. Christensen Hans-Hellmut Nagel (Eds.)

Cognitive Vision Systems

Sampling the Spectrum of Approaches

@ Springer



Volume Editors

Henrik 1. Christensen

Royal Institute of Technology
Centre for Autonomous Systems
100 44 Stockholm, Sweden
E-mail: hic@nada.kth.se

Hans-Hellmut Nagel

Universitidt Karlsruhe

Fakultit fiir Informatik

Institut fiir Algorithmen und Kognitive Systeme
76128 Karlsruhe, Germany

E-mail: nagel @iaks.uni-karlsruhe.de

Library of Congress Control Number: 2006926926

CR Subject Classification (1998): 1.4, 1.2.9-10, 1.2.6, 1.5.4-5, F2.2

LNCS Sublibrary: SL 6 — Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-33971-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33971-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11414353 06/3142 543210



Preface

During the last decade of the twentieth century, computer vision made considerable
progress towards consolidation of its fundaments, in particular regarding the treatment
of geometry for the evaluation of stereo image pairs and of multi-view image recordings.
Scientists thus began to look at basic computer vision solutions — irrespective of the well-
perceived need to perfect these further — as components which should be explored in a
larger context.

In 2000, Horst Forster, Head of Division in the Information Society Directorate-
General of the European Commission, through his contacts with many computer vision
researchers throughout Europe, sensed their readiness to cooperate for the exploration of
new grounds in a direction subsequently to become known as ‘cognitive vision.” Horst
Forster succeeded in convincing the European Commission to stimulate cooperation in
this direction by funding a four-year program, which encountered an unexpectedly broad
response. It has been a privilege for us to have had a glimpse at the unobtrusive, effective
engagement of Horst Forster to advance scientific cooperation within the European
Union.

It is a particular pleasure for us to thank Colette Maloney, who closely cooperated
with Horst Forster throughout the past by accompanying the many projects funded
under the cognitive vision programme. Her constant encouraging support, her practically
instant response to a seemingly endless series of calls for help in organizational and
financial matters, and her deep commitment to advancing scientific research in this
topical area across Europe made collaboration with her a truly memorable experience.

As part of the efforts to further strengthen cooperation between research groups
from different countries, a seminar was organized at Schloss Dagstuhl in Germany during
October 26-30, 2003. Scientists active in related areas were invited from across the world.
This seminar was co-sponsored by EC Vision, the Cognitive Vision network of excellence
under the leadership of David Vernon. The support from ECVision was instrumental
to the organization of this seminar and the creation of this volume. Presentations and
associated vivid discussions at the seminar were gradually transformed into a set of
contributions to this volume. The editors thank the authors for their considerable efforts
to draft, refine, and cross-reference these contributions.



VI Preface

The editors are grateful to Alfred Hofmann from Springer for agreeing to publish
this book — and for his patience while we wrestled with the ‘mechanics’ to put it together.

All who participated in this seminar still remember the warm hospitality and quiet
efficiency of the staff at Schloss Dagstuhl who thereby contributed significantly to turning
this endeavor into a stimulating and successful event.

February 2006 Henrik I. Christensen and Hans-Hellmut Nagel
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Introductory Remarks

H.I Christensen! and H.-H. Nagel?

! Kungliga Tekniska Hogskolan

100 44 Stockholm, Sweden

hic@nada.kth.se

Institut fiir Algorithmen und Kognitive Systeme,
Fakultit fiir Informatik der Universitiat Karlsruhe (TH)
76128 Karlsruhe, Germany
nagel@iaks.uni-karlsruhe.de

The notion ‘cognitive vision system (CogVS)’ stimulates a wide spectrum of associa-
tions. In many cases, the attribute ‘cognitive’ is related to advanced abilities of living
creatures, in particular of primates. In this context, a close association between the terms
‘cognitive’ and ‘vision’ appears natural, because it is well known that vision constitutes
the primate sensory channel with the largest spatiotemporal bandwidth.

Since the middle of the last century, technical means were gradually developed to
record and process digitized image sequences. These technical advances created a seem-
ingly unresistable challenge to devise algorithmic approaches which explain, simulate,
or even surpass vision capabilities of living creatures. In this context, ‘vision’ is under-
stood to refer to a set of information processing steps which transform the light intensity
distribution impinging onto the transducer surface eventually into some kind of re-action,
be it an observable movement, some acoustical communication, or a change of internal
representations for the union of the depicted scene and the ‘vision system’ itself. The
common understanding of ‘vision’ as a kind of information processing induces the use
of the word ‘system’ in this context for whatever performs these processing steps —
be it a living creature, a familiar digital computer, or any other alternative to realize a
computational device.

The premises underlying such a view have been accepted to the extent that an attribute
like ‘cognitive’ appears applicable to technical constructs despite the fact that it has
been coined originally in order to characterize abilities of living creatures. Similar to the
experience with other natural language terms referring to commonsense notions — like,
e. g., ‘intelligence’ — scientific efforts to conceive an artifact, which could be considered
equivalent to living creatures regarding its input/output relations, are accompanied by
efforts to define precisely the notion involved, in our case ‘cognitive vision’.

It should not come as a surprise that such endeavors result in a large spectrum
of definitions. This observation can be attributed to the fact that complex abilities of
living creatures involve many aspects, which have to be taken into account. It sometimes
is useful to ask which among these aspects have been selected — or emphasized — in
order to motivate a definition of the notion ‘cognitive vision system’. Three aspects in
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2 H.I. Christensen and H.-H. Nagel

particular appear frequently, either explicitly or implicitly, namely wide applicability,
robustness, and speed. The first aspect mentioned implies that a ‘true CogVS’ can easily
and reliably adapt to a wide variation of boundary conditions under which it is expected
to operate. This implication rules out the possibility that a CogVs is endowed right
from the start with ‘all the knowledge’ it might need in order to cope with new tasks.
It is assumed instead that a CogVS can learn task-relevant spatiotemporal structures in
its environment and can adapt its internal operational parameters in order to reliably
estimate the current status of itself and of its environment. ‘Robustness’ implies that
small variations of the environmental state, which are considered to be irrelevant for the
execution of the current task, should not influence the performance. And ‘speed’ implies
that the CogV's operates fast enough that task-relevant changes in the environment can be
handled without endangering the desired performance level. This latter aspect became
important once a ‘vision system’ had to provide sensory feedback for a mechanical
system, in particular for the case of computer vision in the feedback loop of a moving
or manipulating artifact.

Although such goals were propagated already rather early during the development
of computer vision systems, it turned out that at most two of these three goals could be
attained at the same time. If a system was claimed to be (more) widely applicable and
robust, it was not fast enough. If it was robust and fast, it was not widely applicable (e.g.
specialized machine vision systems for quality control in semi-automated manufacturing
plants). And if a system approach was touted as fast and widely applicable, it usually was
not robust — if it worked at all. Given our current understanding about the computational
expenses required to even determine a small set of visual features reliably, this state of
affairs is most plausible even almost up to present days. Ten or twenty years ago, when
memory and processing capacity were smaller by three to four orders of magnitude
compared to what is available at the same price today, many ‘simplifications’ or ‘speed-
ups’ were simply a matter of necessity in order to be able to explore an experimental
approach at all.

A frequently encountered argument in connection with a CogVs simply quotes that
‘there is nothing new under the sun — in German: Alles schon dagewesen’ (attributed
to Rabbi Ben Akiba). As with the Delphi Oracle, the truth of such a statement can
be ‘proven’ by choosing an appropriate point of view for the interpretation. Rather
than burying the topic based on such an adage, it appears more fruitful to inquire in
detail which changes or advances of the State-of-the-Art may justify to re-approach
previously treated and subsequently abandoned problems. As mentioned already, the
still exponential improvement of the price/performance ratio for digital memory and
processors let it appear feasible that real-time processing of a video input stream does
no longer compromise the quality of elementary signal processing steps to the extent
that only rather brittle results could be expected. In addition, size, weight, and power
consumption of today’s computers and cameras allow to incorporate them into mobile
experimental platforms (embodied computer vision systems). Advantages related to the
fact that at least part of the system environment may ‘serve as its own representation’
removes many bottlenecks. A continuously updated state estimate can be used instead
of time-consuming searches for the ‘optimal currently appropriate hypothesis’ about the
state of the system and its environment.
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The ability to experiment more — with the ensuing advantage of being able to study
the gamut of influences in order to separate between genuinely important task conditions
from mere disturbances (noise) — gradually provided a background of reproducible ex-
periences. This in turn stimulated more theoretically oriented research which enabled to
isolate critical conditions and to prepare measures to prevent them or to cope with them.
Choosing a sufficiently large support area for the estimation of gray-value gradients and
the exploitation of a search across a range of spatial scales may serve as examples. On top
of such efforts, stochastic techniques are applied in order to cope with the unavoidable
influences of noise.

In addition to these considerations, another aspect appears to become even more im-
portant. The extraction of local features (edge elements, corner points, texture elements,
...) and their aggregation to non-local descriptions (image segments, 3D-surface-facets
in the scene) have matured to the point where it becomes possible to abstract from a
quantitative geometric characterisation of relevant phenomena to a conceptual level of
representation. At this latter level of representation, logic-based inference processes may
be activated, which facilitate non-numerical consistency checks. The incorporation of
such logic-based processes into a computer vision system offers three important advan-
tages. It first allows to exploit general knowledge about spatiotemporal relations. This in
turn allows to generate warnings when ‘implausible’ situations occur or to circumvent
these altogether. And last, but not least, it simplifies the interface between the ‘system’
and its user — be it the developer or someone who has to supervise an operational system.

It increasingly appears justifiable, therefore, to speak about CogVs: current exper-
imental systems begin to exhibit performance characteristics which start to reduce the
qualitative difference to the performance of living creatures to a — still formidable —
quantitative difference. This fact in turn opens the road for small, but effective gradual
improvements of system performance. Growing familiarity with the ‘real effects’, which
influence system performance, is likely to improve our understanding for the ‘solutions’
applied by living creatures. Eventually, the attribute ‘cognitive’ of a CogVS may become
appropriate even in the sense that certain aspects of information processing by living
creatures can be described in a suitable manner, quite apart from the view that ‘cognitive’
addresses processing at the conceptual level of representation.

The contributions collected in this volume originated in presentations at a Dagstuhl
Seminar (#03441,26-31 October 2003) on Cognitive Vision Systems. It samples various
views on what constitutes a CogVs and why. In order to preserve the wide spectrum of
opinions and thereby to stimulate the debate about characteristics, means, and goals of
building a CogVs, dogmatic decisions have been avoided regarding what is and is not
a CogVs. The contributions have been grouped, however, with the aim to emphasize
similarities in subgoals and/or approaches.

Part 1 (Foundations of Cognitive Vision Systems) collects contributions which address
questions concerning the definition and overall structure of what appears to constitute
a CogVs. Part II (Recognition and Categorization) is concerned with investigations
which study the extraction and aggregation of features from video signals with the goal
to establish a relation between a subset of these features and conceptual representa-
tions for observable bodies and behaviors recorded in the scene. Part Il (Learning and
Adaptation) concentrates on investigations which attempt to broaden the applicability
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of a system — or to reduce the necessity of interactive tuning phases — by machine
learning approaches and by automatic parametric optimization. Part IV (Representation
and Inference) collects contributions which study the exploitation of representations for
inference processes, in particular inference processes based on (variants of) predicate
logic. Part V (Control and Systems Integration) specifically addresses problem areas
which become important due to the necessity to integrate a large and diverse set of
processes into a coherent system. In this context, it becomes unavoidable to cope with
limited resources — rather than having the system bogging down at unexpected times
without reasons discernible from the outside. An attempt is made in a concluding section
(Part VI) to condense the insights from this seminar into a small number of theses which
could provide a starting point for future investigations.

Deliberately, no attempt is made at this point to condense even further the information
formulated by authors of contributions to this volume in abstracts, introductory and
concluding sections. Readers are invited to browse and most likely will find that the
time spent doing this will have been worthwhile.



Part I

Foundations of Cognitive Vision Systems
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The Space of Cognitive Vision

David Vernon

DIST, University of Genova, Italy
vernon@ieee.org

Abstract. Cognitive vision is an area that is not yet well-defined, in the sense that one can
unambiguously state what issues fall under its purview and what considerations do not. Neither is
there unequivocal consensus on the right approach to take in addressing these issues — there isn’t
a definitive universally-accepted scientific theory with “gaps in understanding’ that merely need to
be plugged. On the contrary, there are clearly competing viewpoints and many poorly-understood
issues (such as the point where vision stops and cognition starts). Depending on how you choose
to view or define cognitive vision, there are many points of departure, some based squarely in
artificial intelligence and image processing, others in developmental psychology and cognitive
neuroscience, and others yet in cognitive robotics and autonomous systems theory. This paper is
an attempt to sketch a framework within which the complete domain of cognitive vision can be
set, a framework that embraces all of the possible approaches that can be taken and that highlights
common concerns as well as fundamental differences between the approaches. Our goal here is to
define cognitive vision in a way that avoids alienating any particular community and to state what
the options are. While we will note in passing possible strengths and weaknesses of the various
approaches, this paper will not attempt to argue in favour of one approach over another.

2.1 The Background to Cognitive Vision

It is nearly forty years since Roberts first published the results of his seminal attempts to
construct a computer vision system [374]. Since then, computer vision has matured and
undergone many stages in its evolution. From the blocks-world approaches of the sixties
and early seventies [164, 201, 483, 419], to the knowledge-based and model-based
approaches of the mid to late seventies [23, 171, 446, 54], the modular information
processing approaches of the late seventies and early eighties with their strong emphasis
on early vision [278, 30, 280, 283, 284, 282, 193, 281], the development of appearance-
based vision in the nineties [81] — a decade that was perhaps distinguished more than
anything by the creation of mathematically-sound robust early vision and the associated
expansion of vision based on computational geometry [117, 175] — to the more recent
probabilistic techniques and the increasingly-widespread use of machine learning [355].
On the way, computer vision has spawned a number of successful offshoots, such as
machine vision for industrial inspection, the analysis of video data for remote monitoring
of events, and the use of image analysis in the creation of special effects in the film

H.1. Christensen and H.-H. Nagel (Eds.): Cognitive Vision Systems, LNCS 3948, pp. 7-24, 2006.
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8 D. Vernon

industry. However, to date, the ultimate goal of creating a general-purpose vision system
with anything close to the robustness and resilience of the human visual system remains
as elusive as ever.

One of the more recent trends in computer vision research in the pursuit of human-
like capability is the coupling of cognition and vision into cognitive computer vision.
Unfortunately, it is apparent that the term cognitive computer vision means very dif-
ferent things to different people. For some, it means the explicit use of knowledge and
reasoning together with sensory abstraction of data from a perceived environment; for
others it implies the emergent behaviour of a physically-active system that learns to
make perceptual sense of its environment as it interacts within that environment and as a
consequence of that interaction. For others yet, it is a meaningless term in its own right
and cannot be treated except as an intrinsic component of the process of cognition that,
in turn, is an inherent feature of autonomous systems. Our goal here is to present all of
these viewpoints in a single consistent framework:

1. To provide a definition of cognitive vision that is neutral with respect to possible
approaches and to explain what capabilities might be provided by such a system;

2. To delineate the space of cognitive vision and characterize it in terms or dimensions
that allow it to be mapped on to different approaches;

3. To highlight contentious and significant issues (e.g. the necessity for embodiment,
the nature and need for representations, the nature and role of knowledge, the role
of language, the inter-dependence of perception and action).

These are the issues to which we now turn.

2.2 Towards a Universal Definition of Cognitive Vision

There are several ways one can approach the definition of a discipline. One can take a
functional approach, setting out the minimal tasks that a system should be able to carry
out, or one can take an architectural approach, identifying the manner in which a system
should be constructed and the functional modules that would be used in a typical system.
Alternatively, one can adopt a behavioural but non-functional approach that identifies
generic attributes, capabilities, and characteristics. A good definition should be neutral to
any underlying model, otherwise it begs the research question and preempts the research
agenda. Consequently, this rules out an architectural definition. A good definition should
also be application-independent. This rules out a strictly functional definition, or at
the very least necessitates that any functions be generic and typically common to all
possible systems. Consequently, we will attempt to define cognitive vision using generic
functionality (i.e. capability) and non-functional attributes.
We’ll begin with the definition adopted by EC Vision to date [12]:

“Cognitive computer vision is concerned with integration and control of vision
systems using explicit but not necessarily symbolic models of context, situation
and goal-directed behaviour. Cognitive vision implies functionalities for knowl-
edge representation, learning, reasoning about events & structures, recognition
and categorization, and goal specification, all of which are concerned with the
semantics of the relationship between the visual agent and its environment.’
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Although this definition is useful, in that it focusses on many of the key issues, it depends
a little too much on architectural issues (e.g. integration, control, functional modules)
and it is not as neutral to underlying model(s) as perhaps it should be. That is, it strays
from a definition of what cognitive vision is to a definition of ow it is to be achieved. As
we will see in Section 2.3, there are several competing approaches, not all of which are
compatible with the one that is implicitly favoured in this definition. That said, however,
it does provide us with a good starting point and the following is an attempt both to
expand on it, drawing out the key issues even more, eliminating the model-dependent
and architecture-specific components, and highlighting the generic functionalities and
non-functional attributes.

A cognitive vision system can achieve the four levels of generic functionality
of a computer vision system:!

1. Detection of an object or event in the visual field;

2. Localization of the position and extent of a detected entity;

3. Recognition of a localized entity by a labelling process;

4. Understanding or comprehending the role, context, and purpose of a recog-
nized entity.?

It can engage in purposive goal-directed behaviour, adapting to unforeseen
changes of the visual environment, and it can anticipate the occurrence of objects
or events. It achieves these capabilities through:

1. a faculty for learning semantic knowledge (i.e. contextualized understand-
ing of form and function), and for the development of perceptual strategies
and behaviours;

2. the retention of knowledge about the environment, the cognitive system
itself, and the relationship between the system and its environment;?

3. deliberation about objects and events in the environment, including the
cognitive system itself.

This definition focusses on what constitutes a cognitive vision system, how it should
behave, what it should be capable of achieving, and what are its primary characteristics.
The first four points encapsulate generic functionality. The next set of issues deal with
non-functional attributes, and the final three points suggest a way of spanning the space
of cognitive vision.

The three non-functional characteristics of purposive behaviour, adaptability, and
anticipation, taken together, allow a cognitive vision system to achieve certain goals,
even in circumstances that were not expected when the system was being designed.
This capacity for plastic resilient behaviour is one of the hallmarks of a cognitive vision
system. The characteristic of anticipation is important as it requires the system to operate

! These four levels were suggested by John Tsotsos, York University, during the course of
Dagstuhl Seminar 03441[73].

2 Implicit in the fourth level is the concept of categorization: the assignment of an object or event
to a meta-level class on some basis other than visual appearance alone.

% The distinction between environmental states, system states, and the environment-system re-
lationship was introduced by Hans-Hellmut Nagel, Universitit Karlsruhe, during the course of
Dagstuhl Seminar 03441[73].
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across a variety of time-scales, extending into the future, so that it is capable of more
than reflexive stimulus-response behaviour.

The final three characteristics of cognitive vision — learning, memory, and delibera-
tion — are all concerned with knowledge: its acquisition, storage, and usage. Knowledge
is the key to cognitive vision. These three issues highlight the chief differentiating char-
acteristics of cognitive vision vis-a-vis computer vision and, as we will see, allow us to
define the space of cognitive vision in a way that is relevant to all the various approaches.

First, however, we must survey the different paradigms or approaches that attempt
to model and effect these characteristics of cognitive vision.

2.3 A Review of Approaches to Cognition

If we are to understand in a comprehensive way what is meant by cognitive vision,
we must address the issue of cognition. Unfortunately, there is no universally-accepted
agreement on what cognition is and different research communities have fundamentally
different perspectives on the matter.

Broadly speaking, we can identify two distinct approaches to cognition, each of
which makes significantly different assumptions about the nature of cognition, the pur-
pose or function of cognition, and the manner in which cognition is achieved. These
are:

1. the cognitivist approach based on information processing symbolic representational
systems;

2. the emergent systems approach, embracing connectionist systems, dynamical sys-
tems, and enactive systems.

Cognitivist approaches correspond to the classical and still prevalent view that ‘cog-
nition is a type of computation’ which operates on symbolic representations, and that
cognitive systems ‘instantiate such representations physically as cognitive codes and
... their behaviour is a causal consequence of operations carried out on these codes’
[360]. Connectionist, dynamical, and enactive systems can be grouped together under
the general heading of emergent systems that, in contradistinction to the cognitivist view,
argues against the information processing view of cognition as ‘symbolic, rational, en-
capsulated, structured, and algorithmic’, and argues in favour of one that treats cognition
as emergent, self-organizing, and dynamical [447, 219].

2.3.1 Symbolic Information Processing Representational Cognitivist Models

Cognitive science has its origins in cybernetics (1943-53), following the first attempts
to formalize what had to that point been metaphysical treatments of cognition. The
intention of the early cyberneticians was to create a science of mind, based on logic.
Examples of progenitors include McCulloch and Pitts and their seminal paper ‘A logi-
cal calculus immanent in nervous activity’ [294]. This initial wave in the development
of a science of cognition was followed in 1956 by the development of an approach



