ardell Lines

ANGUAGE

PASCAL

AS A
SECOND
LANGUAGE

VARDELL LINES
National Applied Computer Technoiogies
Orem, Utah

PRENTICE-HALL, INC,, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Lines, M. Vardell.
Pascal as a second language.

Includes index.

1. PASCAL (Computer program language) L. Title.
QA76.73.P2L55 1984 001.64'24 83-9493
ISBN 0-13-652925-9

Editorial/production supervision

and interior design: Lynn S. Frankel
Cover design: Photo Plus Art (Celine A. Brandes)
Manufacturing buyer: Gordon Osbourne

©1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

109 87 65 4321

ISBN D0-13-k52925-19

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

PASCAL

AS A
SECOND
LANGUAGE

PREFACE

In 1965, Niklaus Wirth proposed a language that would encourage and facilitate system-
atic software development. This language, which Wirth named Pascal in honor of Blaise
Pascal, a seventeenth-century mathematician and philosopher, was officially announced
in 1971. Some revisions were made to the language in 1972 and a report and user’s man-
ual was published n 1973. Since then its use and popularity have spread, and it is now
available on most computers from micros to largescale.

A standard definition of the Pascal language was adopted in early 1981 by the Inter-
national Standards Organization (ISO). The ISO standard is very close to the Wirth defini-
tion described in his report. This book is a comprehensive coverage of ISO standard
Pascal with the exception of conformant arrays. It is intended for readers who have some
programming experience.

Examples are a valuable learning tool, so I have included many example programs
in the book. Some of them, especially in the early chapters, are trivial and are of no bene-
fit beyond an aid to learning. Some of the programs in the later chapters are intended to
serve the additional purpose of presenting useful algorithms. In these example programs,
user-defined identifiers are lowercase and the Pascal reserved words are uppercase.

Most of my Pascal experience has been on microcomputers in which the primary
input device is a keyboard and the primary output device is a CRT screen. Many of the
example programs reflect the interactive mode of operation implied by such a system.
Some of the programs take advantage of the screen output by formatting and highlighting
the text.

Basic concepts are covered in Chapter 1. These concepts include the Pascal vocabu-
lary, structure of Pascal programs, Pascal operators, and data types. Statements in Pascal
may be simple or structured. All of the statements are described in Chapter 2. Pascal in-

ix

Contents

cludes two kinds of subprograms—procedures and functions, as discussed in Chapter 3.
Chapters 4 through 7 cover the four types of structured data. Arrays are described in
Chapter 4, sets in Chapter 5, records in Chapter 6, and files in Chapter 7. The third cate-
gory of Pascal data types, pointers, is described in Chapter 8.

The appendixes include syntax diagrams for ISO standard Pascal and a brief de-
scription of several methods used to associate files in a Pascal program to external files.

VARDELL LINES

PASCAL

AS A
SECOND
LANGUAGE

CONTENTS

PREFACE

1 BASIC CONCEPTS

Pascal Vocabulary 2
Identifiers 3
Directives 3

Unsigned numbers 3
Labels 4

Character strings 4
Token separators 4
Structure of Pascal Programs 4
Data Types 8
Simple data types 9
Data Declaration 15
Constants 15

Types 16

Variables 16
Exercises 18

vi

STATEMENTS

Simple Statements 20
Expressions 21

Assignment statements 24
GOTO statements 27
Procedure statements 27
Structured Statements 33
Compound statements 33
Conditional statements 34
Repetitive Statements 41
Exercises 48

PROCEDURES AND FUNCTIONS

Parameter List 52
Procedures 54
Functions 56
Directives 56
Recursion 58
Exercises 62

ARRAYS

Unpacked Arrays 65
Packed Arrays 74
Strings 75

STRING Type 81
Exercises 82

SETS

Set Operations 85
Exercises 97

Contents

20

50

84

Contents

6

RECORDS

Unpacked Records 99
Packed Records 104
Arrays of Records 108
WITH Statement 109
Variants 111
Exercises 116

FILES

File Declaration 118
File I/O Procedures 119
File Buffer 123

File Operations 126
Program Reference 132
Exercises 143

DYNAMIC DATA STRUCTURES

Pointer Types 146
Lists 147

Trees 159

Program calculator 165
Exercises 177

SYNTAX DIAGRAMS FOR STANDARD PASCAL

FILE ASSOCIATION

INDEX

vii

98

118

145

179

185

187

BASIC CONCEPTS

Programming languages have several attributes that fall into two broad classes: ease of
use and efficiency. The ease of use attributes include language fluency, program legibili-
ty, and program maintainability. Language fluency refers to the level of difficulty of
both learning the language and writing programs in it. Program legibility refers to the
level of knowledge required in order read and understand programs written in it. Legibil-
ity is a function of the particular program as well as the language. The ease with which
someone can correct and enhance a program is program maintainability. This attribute
depends on legibility, in particular on the control structures available in the language.

Efficiency attributes include processing time, program storage, and control of
hardware resources. High-level languages such as Pascal are generally less efficient than
assembly languages. The efficiency of a high-level language depends on the language
features and on how the language is implemented.

A language that has too many features may become difficult to understand for the
compiler as well as human readers. In such cases, the compiler will generate less effi-
cient code unless it is an optimizing compiler. Optimizing compilers require more
memory, thus limiting their use on small computers, and take longer to compile. The net
result is less efficient programs. On the other hand, a language that has too few features
may result in less efficient programs because extra program statements will be required
to make up for the lack of features.

The efficiency of a high-level language depends on its implementation. If it is
implemented with a compiler that generates machine or native code, it will be more effi-
cient than if it is implemented with an interpreter. Since any high-level language can be
implemented either way, the effect on efficiency is not language dependent.

2 Basic Concepts ~ CHAP. 1

Most high-level languages cannot directly control hardware resources. However,
some high-level languages include intrinsic routines written in assembly language that
can be called to control hardware resources and some allow embedded assembly lan-
guage statements for the same purpose. These features are extensions to the standard lan-
guage and may be added to any high-level language. For example, there are versions of
BASIC, FORTRAN, and Pascal that provide these extended features.

All programming languages have a set of rules that describe how programs may be
written using the language. These programming rules include a syntax part and a seman-
tics part. Syntax rules define how the vocabulary of the language may be combined to
form statements. Semantic rules assign meaning to the statements.

The syntax and semantics of Pascal mean what you would expect them to mean,
with the result that programs written in Pascal are quite easy to read and understand. This
means that compilers can generate efficient code as far as memory required and execu-
tion speed is concerned. It also means that the programs are legible and maintainable and
that the language itself is quite easy to learn and use.

Computer programs consist of two essential parts: data and procedures that process
the data. Most programming languages stress the processing part, but Pascal is as power-
ful in its ability to describe data as it is in its ability to process data.

PASCAL VOCABULARY

The Pascal vocabulary consists of letters, digits, and special symbols. Letters in the
standard definition of Pascal include the 26 letters in the Roman alphabet. Pascal imple-
mentations may include both upper- and lowercase letters in their vocabulary. In such
implementations, there is no distinction between upper- and lowercase except in a char-
acter string. For example, the names alpha and ALPHA would be equivalent.

Digits are the ten Arabic numerals or digits O through 9.

Special symbols in Pascal are tokens with special meanings. They are used to
delimit the syntactic units of the language. Special symbols are represented by single
special characters; two special characters, called compound symbols; and words, called
wordsymbols or reserved words. In BNF form, the special symbols are:

special symbol=“+”|“-”|‘*”| /"|“ "< | ST
L)
Bt Dot et M N
“and” | “array” | “begin” | “case” | “const” | “div" |
“do” | “downto” | “else” | “end” | “file’ | “for” |
“function” | “goto” | “if” | “in” | “label” | “mod"” |
“nil” | “not” | “of " | “or"" | “packed” | “procedure’ |
“program” | “‘record” | “repeat” | “set” | “then” |
to” | “type” | “until” | “var” | “while” | “with”

Va‘n'ous Pascal implementations may have additional special symbols in their vocabu-
laries. For example, several implementations of Pascal, including UCSD and IBM,
include the reserved word **string.”

Pascal Vocabulary 3

Special symbols are also referred to as lexical tokens. Pascal includes other lexical
tokens that are formed from the basic vocabulary. These additional lexical tokens are
identifiers, directives, unsigned numbers, labels, and character strings.

Identifiers

Identifiers are names used to represent constants, types, variables, procedures, and
functions. Identifiers are composed of a letter followed by zero or more letters or digits.
Identifiers may be any length, although most implementations of Pascal limit the number
of characters that are significant. For example, several implementations recognize only
the first eight characters as significant. In implementations in which the length of identi-
fiers are limited, two apparently different identifiers may be considered identical. For
example, the two identifiers, employeename and employeenumber, would be considered
identical if only eight characters are significant. An identifier cannot be spelled the same
as a reserved word.

Examples of valid identifiers:

alpha

R3780

N
studentname

Examples of invalid identifiers:

3780RJE identifiers must begin with a letter
tax(@5% special characters are not allowed
student-name special characters are not allowed

Some Pascal implementations allow the underline () special character to be used
in identifiers to enhance program legibility. Thus, the invalid identifier *‘student-name’’
could be written as *‘student_name.’’

Directives

Pascal directives are used only in place of procedure or function blocks. The direc-
tive forward is the only standard directive, but various Pascal implementations may
define other directives. Directives are described with procedures and functions in
Chapter 4.

Unsigned Numbers

Decimal notation is used to represent numeric constants of integer type or real
type. Scientific notation, in which the letter ‘‘e’ precedes a scale factor, can be used to
represent real constants. The range of values for both integer and real numbers is imple-

mentation dependent.

4 Basic Concepts CHAP. 1

Examples of numbers:

94
1.3e12
3.141593
=37

Labels

Labels are a sequence of from one to four digits and have an apparent integer range
of 0 to 9999.

Character Strings

A character string consists of a sequence of characters enclosed in apostrophes.
Characters include letters, digits, and special characters of the character set being used.
An apostrophe can be included in the string of characters by including a second apos-
trophe, as shown in the second example below.

Examples of character strings:

‘Error’
‘I can’’t find the file.’

Token Separators

Pascal separators are spaces (except in character strings), ends of lines, and com-
ments. A comment is any sequence of characters and ends of lines enclosed in braces,
{}. Since braces are not found on all keyboards, the Pascal standard provides an alterna-
tive set of delimiters for comments. The alternative set of comment delimeters are (* in
place of { and *) in place of }. Zero or more separators may be used between any two
consecutive tokens or before the first token of a statement. At least one separator must be
used between consecutive tokens made up of reserved words, labels, identifiers, or
unsigned numbers.

Examples of token separators:

changefthis is a separator}DIV{and so is this}10

change DIV 10 {spaces are separators}

change

DIV 10 {the end-of-line between change and DIV is a
separator}

STRUCTURE OF PASCAL PROGRAMS

Pascal programs are divided into a heading and a body or block. The heading gives the
program name and lists the parameters used in the program. The block consists of six

Structure of Pascal Programs 5

sections, but all except the statement section may be empty. These six sections, in the
order in which they must appear in the program, are:

1. Label declaration: All labels used in a Pascal program must be declared in this sec-
tion.]

2. Constants definition: Values are assigned to identifiers in this section. The identifi-
er cannot be assigned another value anywhere in the program.

3. Type definition: Programmers can define their own data types in this section. This
is one of the real powers of Pascal.

4. Variable declaration: All variables used in a program must be declared in the vari-
able declaration section. The variable is assigned a type, either one of the four
predefined or standard types or a new type defined by the programmer.

5. Procedure and function declarations: Procedures and functions are program
modules. They must be declared before they are called or referenced.

6. Statements: This is the processing part of the program.

Syntax diagrams are used throughout this book to describe the syntax of Pascal
statements. A syntax diagram is a directed graph with one entry and one exit. Each syn-
tax diagram has a name. For example, the syntax diagram for a complete Pascal program
shown in Figure 1.1 is named ‘‘program.’’” Names of diagrams can be used in other syn-
tax diagrams. For example, the name ‘‘block’’ in the syntax diagram of Figure 1.1 is the
name of another syntax diagram, specifically the one shown in Figure 1.2 that defines a
block.

Forks are used in syntax diagrams to represent an alternative sequence. Each path
at a fork defines an allowable sequence. Repetitive sequences are represented by loops
in syntax diagrams. A loop may be traversed zero or more times, with each traversal
defining an allowable sequence. In Figure 1.2 there is a fork near the word LABEL in
which one path leads to LABEL and the other continues down. This indicates that the
label declaration section is optional. Taking the path to LABEL, we find a loop that con-
tains ‘‘unsigned integer’’ and ‘‘,”’. This loop means that there can be any number of
unsigned integers (labels) separated by commas.

The symbols used in the syntax diagrams are the special symbols of the Pascal
vocabulary. Names may be reserved words or basic units of the vocabulary (letters,
digits, or special symbols) or they may be the names of other syntax diagrams. To distin-
guish reserved words from other identifiers in the syntax diagrams, names of reserved
words will be in uppercase and all other names will be in lowercase. Referring to Figure

PROGRAM ——3p- identifier —————4 (Cidenﬁfljj) — ,)
C—> block ==——3 .

FIGURE 1.1 Syntax diagram for a complete Pascal program.

6 Basic Concepts CHAP. 1

block T'» LABEL ——T> unsigned integer

[

~ e o

\DCONST (- identifier > = —-bconstant)

L~

\~>TYPE T_> identifier ————— - = e—type j

- . -
\’VAR Ztidentifjj ! m—type >
(; -

f—-—-;<—block<——;<)

\> PROCEDURE == identifier === parameter list

\b FUNCTION » identifier P parameter |ist e | e— type

KbBEGiN Cstatemij» END =—

FIGURE 1.2 Syntax diagram of a block in Pascal programs.

1.1, “PROGRAM” is a reserved word, ‘‘identifier’’ and ‘‘block’’ are names of other
syntax diagrams, and the special characters are special symbols of the Pascal vocabulary.

The syntax diagram of Figure 1.1 defines a complete Pascal program. It shows the
details of the header part in which the wordsymbol PROGRAM, the name of the pro-
gram, and a list of parameters, enclosed in parentheses are required. The header is
separated from the block by a semicolon and the program is terminated by a period.
Semicolons are used to separate the different sections within a block and is also used to
separate statements within the statement section. This can be seen by an examination of
the syntax diagram for a block shown in Figure 1.2. The syntax diagram for a block also
defines the order in which the sections must occur within the block and that all sections
are optional except the statement section.

Pascal programs can be divided into subprograms called procedures and functions.
These subprograms have the same structure as programs, as can be seen in Figure 1.2.
Each subprogram has a heading that includes a reserved word identifying the type of sub-
program, the subprogram name, and a list of parameters. Subprograms also include a
block consisting of the same six sections as the program block. This implies that labels,
constants, types, variables, and other subprograms can be defined within a subprogram.
The definition of a label or an identifier representing a constant, type, variable, or anoth-
er subprogram is valid only within the defining subprogram. This range of validity is
called the scope of the label or identifier.

Structure of Pascal Programs 7

0
PROGRAM calculator
1
PROCEDURE initialize
1
PROCEDURE scan
2
FUNCTION getch
FUNCTION conreal
FIGURE 1.3 Block structure of the
1 Pascal program
PROCEDURE readline calculator. The number in
the upper-right corner of
each block is the lexical
level.

Scope can best be explained by the use of examples. Figure 1.3 shows the block
structure of a Pascal program and Figure 1.4 illustrates the hierarchical structure of the
same program.

The scope of an identifer declared in program calculator is the entire program
represented by the block drawn around the program. These identifiers are referred to as
globals and they can be referenced from anywhere in the program.

The scope of identifiers declared in procedure initialize is limited to procedure ini-
tialize, as indicated by the block representing this procedure. These identifiers are local
to procedure initialize and cannot be referenced from anywhere else in the program. If
the same identifier is defined in both the program and procedure, there will be two
separate and distinct identifiers with different scopes. The identifier defined in procedure
initialize will be valid only within the procedure and the global will not be valid in ini-

getch

conreal

Lexical
Level
PROGRAM 0
calculator
PROCEDURE PROCEDURE PROCEDURE 1
initialize ! scan readline
FUNCTION FUNCTION FIGURE 1.4 Hierarchical structure of

2 the Pascal program
calculator.

