

Additives in Polymers

Industrial Analysis and Applications

J.C.J. BART

ADDITIVES IN POLYMERS

Industrial Analysis and Applications

Jan C.J. Bart

DSM Research, The Netherlands

江苏工业学院图书馆 藏 书 章

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Bart, Jan C. J.

Additives in polymers: industrial analysis and applications / Jan C.J. Bart. p. cm.

Includes bibliographical references and index.

ISBN 0-470-85062-0 (acid-free paper)

1. Polymers – Additives. 2. Polymers – Analysis. I . Title.

TP1142.B37 2005

668.9 – dc22

2004015411

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85062-0

Typeset in 9/11pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

The author and publishers wish to thank C. Gerhardt, GmbH & Co. KG for providing the cover image: 'Soxtherm' an original painted by Douglas Swan (1997).

Foreword

Loss of knowledge is an acute threat to companies. The crucial question is how existing knowledge and new technologies can be harnessed as a corporate resource. A major problem facing industry is retaining knowledge within the company, in particular in times of acceleration of innovation. Moreover, in industrial research there is an unmistakable shift from generating knowledge and solving problems by experimental work towards detecting, selecting and absorbing knowledge from the external knowledge infrastructure and adapting it to specific situations. This book contributes a great deal to preserving and critically evaluating knowledge in the field of the analytics of polymer additives.

Additives play a leading role in the success of commercial plastics, elastomers, rubbers, coatings and adhesives. Without additives, many polymers would simply be of limited use. Although polymer additive analysis claims a history of use spanning at least half a century it is, nevertheless, still a continuously evolving research area with new and modified procedures related to increasingly sophisticated products. In many ways, this has led to a plethora of traditional and new chemical, physico-chemical and physical techniques and applications that are confusing to the specialist and beginner alike. An overview of developments across all areas of polymer additive analysis is lacking and a unified approach should therefore be of considerable assistance. This work shows that industrially relevant polymer additive analysis has developed into a very broad and complex field, in retrospect at the limit for one single author and problem holder. Also, despite the many advances direct polymer additive analysis has not yet displaced conventional wet chemical routes. In this respect, current state-of-the-art ends up in a draw. This book makes a substantial contribution to the current literature on the analytics of polymer additives, follows up an earlier industrial tradition and lays a foundation for the future. It will be of great value to a broad readership comprising industrial and academic (analytical) chemists, polymer scientists and physicists, technologists and engineers, and other professionals involved in R&D, production, use and reuse of polymers and additives in all areas of application, including manufacturers, formulators, compounders, end users, government legislators and their staff, forensic scientists, etc.

With a rapidly developing field as this one, this book can only be considered as a work in progress. Hopefully, this monograph will help users to avoid reinventing the classical analytical wheel, and abandon obsolete, old practices, to redirect their efforts eventually towards more appropriate, though sometimes complicated equipment, to become sufficiently proficient to solve real-life analytical problems efficiently and with confidence, or even to devise innovative and challenging new directions. Certainly, this book will save significant time and effort for those analysts faced with cracking complex polymer additive cocktails. As nothing holds true for ever, it will be most appropriate to review the field again within the next decade.

Jos Put Vice President R&D Materials DSM Research Geleen The Netherlands

Preface

Whenever textbooks on polymer chemistry deal with polymer analytical aspects, macromolecular characterisation is usually overemphasised giving the unsuspecting reader the incorrect impression that polymers and formulated polymeric materials are one and the same thing. This treatise, which attempts to remedy such an oversight, is concerned with the characterisation of additives embedded in a broad variety of polymeric matrices. The topic is particularly relevant in view of the impressive growth in the use of synthetic polymeric materials and significant analytical advances in terms of sample preparation, chromatography, detection systems, hyphenation and computation in the last two decades. In every field of science and engineering, it is convenient to have at one's disposal an upto-date handbook to provide specialists with a broad collection of technical details about the individual elements of the field. This has now come true for polymer/additive analysis.

The purpose of this monograph, the first to be dedicated exclusively to the analytics of additives in polymers, is to evaluate critically the extensive problemsolving experience in the polymer industry. Although this book is not intended to be a treatise on modern analytical tools in general or on polymer analysis en large, an outline of the principles and characteristics of relevant instrumental techniques (without hands-on details) was deemed necessary to clarify the current state-ofthe-art of the analysis of additives in polymers and to accustom the reader to the unavoidable professional nomenclature. The book, which provides an in-depth overview of additive analysis by focusing on a wide array of applications in R&D, production, quality control and technical service, reflects the recent explosive development of the field. Rather than being a compendium, cookery book or laboratory manual for qualitative and/or quantitative analysis of specific additives in a variety of commercial polymers, with no limits to impractical academic exoticism (analysis for its own sake), the book focuses on the fundamental characteristics of the arsenal of techniques utilised industrially in direct relation to application in real-life polymer/additive analysis. The analyst requires *expert knowledge*, i.e. understanding of the strengths, weaknesses and limits of application of each technique and how they relate to practical problems. Therefore, the chapters are replete with selected and more common applications illustrating why particular additives are analysed by a specific method. By understanding the underlying principles, the mystery of the problem disappears. Expertise, of course, requires more than understanding of the principles alone. Consequently this book does not serve to become overnight expert in the area of polymer/additive analysis. Rather, it helps the emerging generation of polymer analysts to obtain a rapid grasp of the material in minimal time but is no substitute for personal experience.

Additives in Polymers: Industrial Analysis and Applications fulfils a need and provides information not currently available from another single literature source. This book is different from other books on polymer analysis in a number of ways. Instrumental methods are categorised according to general deformulation principles; there is more emphasis on effective problem solving and promoting understanding than on factual information or instrumental capabilities without focus on any specific analyte or polymer class. The tools of the trade are introduced when appropriate in the deformulation strategy, not on the basis of their general properties only. In particular, the author has tried to emphasise the importance of employing rational methods to laboratory, in situ and on-line polymer/additive analysis. The present text is an appraisal of the literature and methodology currently available (tool description), from which the inexperienced 'deformulator' can select those means necessary to tackle his own problem and finally write his own recipe and clear procedures in compliance with local instrumental possibilities. The critical evaluation of methods also indicates what still needs to be done. From an industry perspective, it is clear that above all there is a need to improve the quantitative aspects of the methods.

xii Preface

Although wide-ranging, the author does not claim to present a collection of 10 comprehensive reviews. Instead, *illustrative* examples, drawn from closely related fields (polymers, rubbers, coatings, adhesives), are given to outline the ranges of applicability. The value of the book stays in the applications. No book is perfect and no doubt equally deserving papers have been omitted and some undeserving ones have been included. However, with the number of techniques much greater than originally planned the text should be kept within reasonable bounds. The reader may keep in mind the lines

For what there was none cared a jot.
But all were wroth with what was not.

Theory and practice of polymer/additive analysis are not a regular part of analytical education, and usually require on-the-job training. The intention in writing this text was to appeal to as wide an audience as possible. Using an instructional approach, this reference book helps orienting chemists and technicians with little or no background in polymer/additive analysis who would like to gain rapidly a solid understanding of its fundamentals and industrial practice. Seasoned analysts of polymer formulations may use the text to quickly understand terms and techniques which fall outside of their immediate experience. The author has attempted to bring together many recent developments in the field in order to provide the reader with valuable insight into current trends and thinking. Finally, this book can also serve as a modern textbook for advanced undergraduate and graduate courses in many disciplines including analytical chemistry, polymer chemistry and industrial chemistry.

In planning this book the author has chosen a monograph in decathlon fashion. This allows critical comparisons between methods and has the advantage of a unified structure. The disadvantage is that no individual can have specialist knowledge in all fields equal to that of the sum of the experts. To overcome this drawback extensive peer review has been built in. For each individual technique more excellent textbooks are available, properly referenced, albeit with less focus on the analysis of additives in polymers. However, the steep growth curve during the past two decades has made reporting on this subject an almost elusive target.

Each chapter of this monograph is essentially selfcontained. The reader can consult any subchapter individually. Together they should give a good grounding of the basic tools for dealing with the subject matter. The reader is well advised to read the two introductory chapters first, which define the analytical problem area and general deformulation schemes. The next chapters tackle polymer/additive deformulation strategically in an ever-increasing order of sophistication in analytical ingenuity. Conventional, indirect, polymer/additive analysis methods, mainly involving wet chemistry routes, are described in Chapters 3 to 9. The book is concluded with prospects in Chapter 10. Extensive appendices describe additive classes; a glossary of symbols, and databases. To facilitate rapid consultation the text has been provided with eye-catchers. Each chapter concludes with up-to-date references to the primary literature (no patent literature). Contributions from many of the top industrial research laboratories throughout the world are included in this book, which represents the most extensive compilation of polymer/additive analysis ever. Once more it comes true that most research is being carried out beyond one's own R&D establishment.

The author has not tried to include a complete *ab-initio* literature search in any particular area. The majority of references in the text are from recent publications (1980–2003). This is not because excellent older references are no longer relevant. Rather, these are frequently no longer used because: (i) more recent work is a fine-tuned extension of prior work; (ii) the 'classic' texts list extensive work up to 1980; and (iii) older methods are frequently based on inferior or obsolete technology and thus direct transfer of methods may be difficult or impossible. Readers familiar with the 'classics' in the field will find that almost everything has changed considerably.

As most (industrial) practitioners have access to rapid library search facilities, it is recommended that a literature search on the analysis of a *specific* additive in a given polymer be carried out at the time, in order to generate the most recent references. Consequently, the author does not apologise for omitting references to specific analyses. However, every effort has been made to keep the book up-to-date with the latest methodological developments. Each chapter comprises a critical list of recommended general reading (books, reviews) for those who want to explore the subjects in greater depth.

This book should convince even the most hardened of the 'doubting Thomases' that polymer/additive analysis has gone a long way. With a developing field such as this one, any report represents only work in progress and is not the last word.

> Geleen December 2003

About the Author

Jan C.J. Bart (PhD Structural Chemistry, University of Amsterdam) is a senior scientist with broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial carrier in R&D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr Bart has acted as a Ramsay Memorial Fellow at the

Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina.

He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials.

Acknowledgements

This book summarises the enormous work done and published by many scientists who believe in polymer analysis. It is humbling to notice how much collective expertise is behind the current state-of-the-art in polymer/additive analysis and how little is at the command of any individual. The high degree of creativity and ingenuity within the international scientific community is inspiring. The size of the book shows the high overall productivity. Even so, only a fraction of the pertinent literature was cited.

Any project has its supporters and opponents, ranging from those faithful who repeatedly encourage to others who actively discourage. The author wishes to thank DSM from CTO to operational managers at DSM Research BV for providing foresight and generous resources for monitoring developments in this field of interest, for stimulating the work and granting permission for publication. This monograph was finalised during a sabbatical year granted only half-heartedly by the Faculty of Science of the University of Messina. The end-product may convince academic sceptics that a book marks a more permanent contribution to transfer of know-how from industry to academia than a standard one-semester course for ever-dwindling flocks of students.

The author thanks colleagues (at DSM Research) and former colleagues (now at SABIC Euro Petrochemicals) for taking on the difficult job of critically reading various chapters of the book. Reviewing means lots of work and not much appreciation from the general public. Information Services at DSM Research have been crucial in providing much needed help in literature search. Each chapter saw many versions, which needed seemingly

endless word-processing. Without the expert help and patience of Mrs Coba Hendriks, who cared repeatedly about every dot and dash, it would not have been possible to complete this work successfully. A special word of thanks goes to Mihaela and David for their hospitality and endurance during the many years of preparation of this text.

The author expresses his gratitude to peer reviewers of this project for recommendation to the publisher and thanks editor and members of staff at John Wiley & Sons, Ltd for their professional assistance and guidance from manuscript to printed volume. The kind permission granted by journal publishers, book editors and equipment producers to use illustrations and tables from other sources is gratefully acknowledged. The exact references are given in figures and table captions. Every effort has been made to contact copyright holders of any material reproduced within the text and the author apologises if any have been overlooked. The author and publisher wish to thank C. Gerhardt GmbH & Co KG for providing the cover image, from an original painted by Douglas Swan.

Jan C.J. Bart Geleen December 2003

Disclaimer

The views and opinions expressed by the author do not necessarily reflect those of DSM Research or the editor. No responsibility or liability of any nature shall attach to DSM arising out of or in connection with any utilisation in any form of any material contained herein.

Contents

Foreword	ix	2.6.2 Deformulation of rubbers	48 48
Preface	xi	2.6.3 Deformulation of polymers 2.7 References	48
ABOUT THE AUTHOR	xiii	CHAPTER 3 Sample Preparation	
		Perspectives	51
ACKNOWLEDGEMENTS	XV		
		3.1 Solvents	54
CHAPTER 1 Introduction	1	3.1.1 Polymer solubility criteria	55
		3.1.2 Solubility parameters	55
1.1 Additives	2	3.1.3 Polymer solutions	56
1.1.1 Additive functionality	3	3.2 Extraction strategy	57
1.2 Plastics formulations	5	3.3 Conventional extraction technologies	59
1.2.1 Supply forms	7	3.3.1 Liquid-liquid extraction	60
1.2.2 Additive delivery	9	3.3.2 Liquid-solid extraction	60
1.3 Economic impact of polymer additives	9	3.3.3 Classical solvent extractions of	
1.4 Analysis of plastics	11	additives from polymers	61
1.4.1 Regulations and standardisation	15	3.3.4 Sonication	75
1.4.2 Prior art	17	3.4 High-pressure solvent extraction methods	81
1.4.3 Databases	19	3.4.1 Supercritical fluid technology	81
1.4.4 Scope	20	3.4.2 Analytical SFE	85
1.4.5 Chapter overview	22	3.4.3 Subcritical water extraction	100
1.5 Bibliography	23	3.4.4 Microwave technology	101
1.5.1 Plastics additives	23	3.4.5 Microwave-assisted extractions	104
1.5.2 Processing technologies	23	3.4.6 Pressurised fluid extraction	117
1.5.3 Instrumental analysis	23	3.5 Sorbent extraction	123
1.5.4 Polymer analysis	24	3.5.1 Solid-phase extraction	124
1.5.5 Polymer/additive analysis	24	3.5.2 Solid-phase microextraction	129
1.6 References	24	3.5.3 Stir bar sorptive extraction	133
		3.6 Methodological comparison of extraction	
		methods	134
CHAPTER 2 Deformulation Principles	29	3.6.1 Experimental comparisons	136
		3.6.2 Extraction selectivity	138
2.1 Polymer identification	30	3.6.3 'Nonextractable' additive analysis	140
2.2 Additive analysis of rubbers: 'Best		3.7 Polymer/additive dissolution methods	146
Practice'	32	3.8 Hydrolysis	152
2.3 Polymer extract analysis	42	3.9 Bibliography	155
2.4 In situ polymer/additive analysis	46	3.9.1 Sampling and sample preparation	155
2.5 Class-specific polymer/additive analysis .	47	3.9.2 Solvents/solubility	155
2.6 Bibliography	48	3.9.3 Extraction methods	156
2.6.1 Polymer identification	48	3.10 References	156

vi Contents

CHAPTER 4 Separation Techniques	171	6.1.2 Modes of detection	353
		6.1.3 Mass resolution	354
4.1 Analytical detectors	177	6.1.4 Isotope distributions	354
4.2 Gas chromatography	181	6.1.5 Accurate mass measurements	355
4.2.1 High-temperature gas		6.2 Ion sources	357
chromatography	200	6.2.1 Electron impact ionisation	360
4.2.2 Headspace gas chromatography	202	6.2.2 Chemical ionisation	362
4.3 Supercritical fluid chromatography	205	6.2.3 Metastable atom bombardment	367
4.4 Liquid chromatography techniques	217	6.2.4 Fast atom bombardment	367
4.4.1 Planar chromatographies	218	6.2.5 Field ionisation	372
4.4.2 Column chromatographies	230	6.2.6 Field desorption	374
4.5 Capillary electrophoretic techniques	273	6.2.7 Thermospray ionisation	376
4.6 Bibliography	278	6.2.8 Atmospheric pressure ionisation	
4.6.1 General texts	278	techniques	378
4.6.2 Detectors	279	6.2.9 Desorption/ionisation methods	383
4.6.3 Gas chromatography	279	6.2.10 Photoionisation techniques	385
4.6.4 Supercritical fluid chromatography	279	6.3 Mass analysers	386
4.6.5 Thin-layer chromatography	279	6.3.1 Sector analysers	387
4.6.6 Liquid chromatography	280	6.3.2 Quadrupole mass spectrometers	389
4.6.7 Size-exclusion chromatography	280	6.3.3 Time-of-flight mass spectrometry.	390
4.6.8 Ion chromatography	280	6.3.4 Quadrupole ion trap	393
4.6.9 Capillary electrophoretic		6.3.5 Fourier-transform ion-cyclotron	
techniques	280	resonance mass spectrometry	395
4.7 References	281	6.3.6 Tandem mass spectrometry	398
		6.4 Direct mass-spectrometric polymer	
		compound analysis	407
CHAPTER 5 Polymer/Additive Analysis:		6.5 Ion mobility spectrometry	415
The Spectroscopic Alternative	299	6.6 Bibliography	417
		6.6.1 Mass spectrometry (General)	417
5.1 Ultraviolet/visible spectrophotometry	302	6.6.2 Mass spectrometers	417
5.2 Infrared spectroscopy	311	6.6.3 Ionisation modes	417
5.3 Luminescence spectroscopy	318	6.7 References	418
5.4 High-resolution nuclear magnetic	1523 (1624 1625)		
resonance spectroscopy	323		
5.4.1 Multidimensional NMR		CHAPTER 7 Multihyphenation and	
spectroscopy	336	Multidimensionality in	105
5.5 Bibliography	342	Polymer/Additive Analysis	425
5.5.1 General spectroscopy	342	7.1. December bunk motion	120
5.5.2 Ultraviolet/visible	2.42	7.1 Precolumn hyphenation	428
spectrophotometry	342		432
5.5.3 Infrared spectroscopy	342	methods	432
5.5.4 Luminescence spectroscopy	342	preparation – spectroscopy/spectrometry.	449
5.5.5 Nuclear magnetic resonance	242	7.3 Postcolumn hyphenation	452
spectroscopy	342	7.3.1 (Multi)hyphenated GC techniques	456
5.6 References	342	7.3.2 (Multi)hyphenated SFC	
		techniques	475
CHAPTER 6 Organic Mass-Spectrometric		7.3.3 (Multi)hyphenated HPLC	100
Methods	349	techniques	489
	202.2	7.3.4 Hyphenated SEC techniques	527
6.1 Basic instrumentation	351	7.3.5 Hyphenated TLC techniques	530
6.1.1 Inlet systems	352	7.3.6 Hyphenated CE techniques	543

Contents	vi
CONTENTS	V11

7.4	Multidimensional chromatography	545	8.6 Radioanalytical and nuclear analytical	. www.ni
	7.4.1 Multidimensional gas		methods	662
	chromatography	548	8.6.1 Activation analysis	663
	7.4.2 Multidimensional supercritical		8.7 Electroanalytical techniques	666
	fluid chromatography	550	8.7.1 Potentiometric methods	668
	7.4.3 Multidimensional liquid		8.7.2 Voltammetric methods	669
	chromatography	550	8.7.3 Coulometric methods	673
	7.4.4 Multidimensional thin-layer		8.8 Solid-state speciation analysis	674
	chromatography	558	8.9 Bibliography	677
7.5	Multidimensional spectroscopy	560	8.9.1 Sampling and sample preparation	677
7.6	Bibliography	562	8.9.2 Atomic spectrometry	677
	7.6.1 General	562	8.9.3 X-ray spectrometry	678
	7.6.2 Multihyphenation and		8.9.4 Inorganic mass spectrometry	678
	multidimensionality	563	8.9.5 Nuclear analytical methods	679
	7.6.3 Precolumn hyphenation	563	8.9.6 Trace-element analysis	679
	7.6.4 Postcolumn hyphenation	563	8.9.7 Electroanalysis	679
	7.6.5 Multidimensional chromatography	563	8.9.8 Speciation analysis	679
	7.6.6 Multidimensional spectroscopy	563	8.10 References	679
7.7	References	564		
			CHAPTER 9 Direct Methods of	
_			Deformulation of	
CHA	PTER 8 Inorganic and Element	000	Polymer/Additive Dissolutions	691
	Analytical Methods	585		
			9.1 Chromatographic methods	692
8.1	Element analytical protocols	587	9.1.1 Size-exclusion chromatography	693
	8.1.1 Element analytical pretreatment		9.2 Spectroscopic techniques	696
	protocols	588	9.2.1 Nuclear magnetic resonance	
	8.1.2 Elemental analysis methods	589	spectroscopy	696
8.2	Sample destruction for classical elemental		9.3 Mass-spectrometric methods	701
	analysis	591	9.3.1 MALDI-MS analysis of	
	8.2.1 Combustion analysis	593	polymer/additive dissolutions	702
	8.2.2 Wet matrix digestion	597	9.4 References	709
	8.2.3 Fusion methods	604		
8.3	Analytical atomic spectrometry	605		
	8.3.1 Atomic absorption spectrometry .	608	CHAPTER 10 A Vision for the Future	711
	8.3.2 Atomic emission spectrometry	613		
	8.3.3 Atomic fluorescence spectrometry	624	10.1 Trends in polymer technology	712
	8.3.4 Direct spectrometric analysis of		10.2 Trends in additive technology	715
	solid samples	625	10.2.1 Advances in additives	717
84	X-ray spectrometry	627	10.3 Environmental, legislative and regulatory	, . ,
0	8.4.1 X-ray fluorescence spectrometry .	628	constraints	723
	8.4.2 Particle-induced X-ray emission	020	10.3.1 Trends in manufacturing,	723
	spectrometry	639	processing and formulation	724
	8.4.3 X-ray absorption spectrometry	642	10.4 Analytical consequences	725
	8.4.4 X-ray diffraction	644	10.4.1 General analytical tool	120
2 5	Inorganic mass spectrometry	648	development	728
0.0	8.5.1 Spark-source mass spectrometry .	650	10.4.2 Future trends in polymer/additive	120
	8.5.2 Glow-discharge mass spectrometry	651	analysis	729
	8.5.3 Inductively coupled plasma–mass	051	10.4.3 Analytical challenges	739
	spectrometry	652	10.4.4 Polymer/additive analysis at the	133
	8.5.4 Isotope dilution mass spectrometry	659	extremes	740
	6.5.4 Isotope unution mass spectrometry	039	CAUCINGS	170

viii Contents

10.4.5 Advanced polymer/additive		APPENDIX II	Functionality of Common	
deformulation schemes	743		Additives Used in Commercial	
10.5 Epilogue	746		Thermoplastics, Rubbers and	
10.6 Bibliography	747		Thermosetting Resins	773
10.7 References	747	APPENDIX III	Specimen Polymer Additives	
			Product Sheets	793
APPENDIX I List of Symbols	751	INDEX		803

CHAPTER 1

Search before Research

Introduction

1.1	Additives	2		1.4.3 Databases	19
	1.1.1 Additive functionality	3		1.4.4 Scope	20
1.2	Plastics formulations	5		1.4.5 Chapter overview	22
	1.2.1 Supply forms	7	1.5	Bibliography	23
	1.2.2 Additive delivery	9		1.5.1 Plastics additives	23
1.3	Economic impact			1.5.2 Processing technologies	23
	of polymer additives	9		1.5.3 Instrumental analysis	23
1.4	Analysis of plastics	11		1.5.4 Polymer analysis	24
	1.4.1 Regulations and standardisation .	15		1.5.5 Polymer/additive analysis	24
	1.4.2 Prior art	17	1.6	References	24

The successful use of plastic materials in many applications, such as in the automotive industry, the electronics sector, the packaging and manufacturing of consumer goods, is substantially attributable to the incorporation of additives into virgin (and recycled) resins. Polymer industry is impossible without additives. Additives in plastics provide the means whereby processing problems, property performance limitations and restricted environmental stability are overcome. In the continuous quest for easier processing, enhanced physical properties, better long-term performance and the need to respond to new environmental health regulations, additive packages continue to evolve and diversify.

Additives can mean ingredients for plastics but they play a crucial role also in other materials, such as coatings, lacquers and paints, printing inks, photographic films and papers, and their processing. In this respect there is a considerable overlap between the plastics industry and the textiles, rubber, adhesives and food technology industries. For example, pigments can be used outside the plastics industry in synthetic fibres, inks, coatings, and rubbers, while plasticisers are used in energetic materials formulations (polymeric composite explosives and propellants). Additives for plastics are

therefore to be seen in the larger context of *specialty chemicals*. 'Specialties' are considered to be chemicals with specific properties tailored to niche markets, special segments or even individual companies. Customers purchase these chemicals to achieve a desired performance. Polymer and coatings additives are ideal specialty chemicals: very specific in their application and very effective in their performance, usually with a good deal of price inelasticity. The corresponding business is associated with considerable innovation and technical application knowledge. Research and development are essential and global operation is vital in this area.

Plastics additives now constitute a highly successful and essential sector of the chemical industry. Polymer additives are a growing sector of the specialty chemical industry. Some materials that have been sold for over 20 years are regarded today as commodity chemicals, particularly when patents covering their use have expired. Others, however, have a shorter life or have even disappeared almost without trace, e.g. when the production process cannot be made suitably economic, when unforeseen toxicity problems occur or when a new generation of additive renders them technically obsolete.

2 Introduction

1.1 ADDITIVES

It is useful at this point to consider the definition of an additive as given by the EC: an additive is a substance which is incorporated into plastics to achieve a technical effect in the finished product, and is intended to be an essential part of the finished article. Some examples of additives are antioxidants, antistatic agents, antifogging agents, emulsifiers, fillers, impact modifiers, lubricants, plasticisers, release agents, solvents, stabilisers, thickeners and UV absorbers. Additives may be either organic (e.g. alkyl phenols, hydroxybenzophenones), inorganic (e.g. oxides, salts, fillers) or organometallic (e.g. metallocarboxylates, Ni complexes, Zn accelerators). Classes of commercial plastic, rubber and coatings additives and their functionalities are given in Appendices II and III.

Since the very early stages of the development of the polymer industry it was realised that useful materials could only be obtained if certain additives were incorporated into the polymer matrix, in a process normally known as 'compounding'. Additives confer on plastics significant extensions of properties in one or more directions, such as general durability, stiffness and strength, impact resistance, thermal resistance, resistance to flexure and wear, acoustic isolation, etc. The steady increase in demand for plastic products by industry and consumers shows that plastic materials are becoming more performing and are capturing the classical fields of other materials. This evolution is also reflected in higher service temperature, dynamic and mechanical strength, stronger resistance against chemicals or radiation, and odourless formulations. Consequently, a modern plastic part often represents a high technology product of material science with the material's properties being not in the least part attributable to additives. Additives (and fillers), in the broadest sense, are essential ingredients of a manufactured polymeric material. An additive can be a primary ingredient that forms an integral part of the end product's basic characteristics, or a secondary ingredient which functions to improve performance and/or durability. Polypropylene is an outstanding example showing how polymer additives can change a vulnerable and unstable macromolecular material into a high-volume market product. The expansion of polyolefin applications into various areas of industrial and every-day use was in most cases achieved due to the employment of such speciality chemicals.

Additives may be monomeric, oligomeric or high polymeric (typically: impact modifiers and processing aids). They may be liquid-like or high-melting and therefore show very different viscosity compared to the polymer melt in which they are to be dispersed.

Selection of additives is critical and often a proprietary knowledge. Computer-aided design is used for organic compounds as active additives for polymeric compositions [1]. An advantage of virtual additives is that they do not require any additive analysis!

Additives are normally present in plastics formulations intentionally for a variety of purposes. There may also be unintentional additives, such as water, contaminants, caprolactam monomer in recycled nylon, stearic acid in calcium stearate, compounding process aids, etc. Strictly speaking, substances which just provide a suitable medium in which polymerisation occurs or directly influence polymer synthesis are not additives and are called polymerisation aids. Some examples are accelerators, catalysts, catalyst supports, catalyst modifiers, chain stoppers, cross-linking agents, initiators and promoters, polymerisation inhibitors, etc. From an analytical point of view it is not relevant for which purpose substances were added to a polymer (intentionally or not). Therefore, for the scope of this book an extended definition of 'additive' will be used, namely anything in a polymeric material that is not the polymer itself. This therefore includes catalyst residues, contaminants, solvents, low molecular components (monomers, oligomers), degradation and interaction products, etc. At most, it is of interest to estimate on beforehand whether the original substance added is intended to be transformed (as most polymerisation aids).

Additives are needed not only to make resins processable and to improve the properties of the moulded product during use. As the scope of plastics has increased, so has the *range of additives*: for better mechanical properties, resistance to heat, light and weathering, flame retardancy, electrical conductivity, etc. The demands of packaging have produced additive systems to aid the efficient production of film, and have developed the general need for additives which are safe for use in packaging and other applications where there is direct contact with food or drink.

The number of additives in use today runs to many thousands, their chemistry is often extremely complex and the choice of materials can be bewildering. Most commercial additives are single compounds, but some are oligomeric or technical mixtures. Examples of polymer additives containing various components are Irgafos P-EPQ, Anchor DNPD [2], technical grade glycerylmonostearate [3] and various HAS oligomers [4]. Polymeric hindered amine light stabilisers are very important constituents of many industrial formulations. In these formulations, it is often not just one component that is of interest. Rather, the overall identity, as determined by the presence and distribution of the individual

ADDITIVES 3

components, is critical. The processing stabiliser Irgafos P-EPO consists of a mixture of seven compounds and the antistatic agent N,N-bis-(2-hydroxyethyl) alkylamine contains five components [5]. Similarly, the antistat Atmos 150 is composed of glycerol mono- and distearate. Ethoxylated alcohols consist of polydisperse mixtures. 'Nonyl phenol' is a mixture of monoalkyl phenols with branched side-chains and an average molecular weight of 215 [6]. Commercial calcium stearate is composed of 70% stearate and 30% palmitate. Also dialkylphthalates are technical materials as well as the high-molecular weight (MW) release agent pentaerythritoltetrastearate (PETS). Flame retardants are often also mixtures, such as polybromodiphenyl ethers (PBDEs) or brominated epoxy oligomers (BEOs). Surfactants rarely occur as pure compounds.

It is also to be realised that many additives are commercialised under a variety of product names. Appendix III shows some examples for a selection of stabilisers, namely a phenolic antioxidant (2,2'methylene-bis-(6-tert-butyl-4-methylphenol)), an aromatic amine (N-1,3-dimethyl-butyl-N'-phenyl-paraphenvlene-diamine), a phosphite (trisnonylphenylphosphite), a thiosynergist (dilaurylthiodipropionate), a UVabsorber (2-hydroxy-4-n-octoxybenzophenone), a nickel-quencher ((2.2'-thio-bis-(4-tert-octylphenolato)-nbutylamine)-nickel), a low-MW hindered amine light stabiliser or HALS (di-(2,2,6,6-tetramethyl-4-piperidinyl)sebacate) and a polymeric HALS compound (Tinuvin 622). Various commercial additive products are binary or ternary blends. Examples are Irganox B225 (Irganox 1010/Irgafos 168, 1:1), Ultranox 2840 (Ultranox 276/Weston 619, 3:2), and Tinuvin B75 (Irganox 1135/Tinuvin 765/Tinuvin 571, 1:2:2).

It may be seen from Appendix II that the tertiary literature about polymer additives is vast. Books on the subject fall into one of two categories. Some provide commercial information, in the form of data about the multitude of additive grades, or about changes in the market. Others are more concerned with accounts of the scientific and technical principles underlying current practice. This book gives higher priority to promoting understanding of the principles of polymer/additive deformulation than to just conveying factual information.

1.1.1 Additive Functionality

Additives used in plastics materials are normally classified according to their intended *performance*, rather than on a chemical basis (cf. Appendix II). For ease of survey it is convenient to classify them into

groups with similar functions. The main functions of polymer additives are given in Table 1.1.

Generally, polymer modification by additives provides a cost-effective and flexible means to alter polymer properties. Traditionally, however, the use of an additive is very property-specific in nature, with usually one or two material enhancements being sought. An additive capable of enhancing one property often does so at the cost of a separate trait. Today many additives are multifunctional and combine different additive functionalities such as melt and light stabilisation (e.g. in Nylostab® S-EED) or metal deactivation and antioxidation (e.g. in Lowinox® MD24) (cf. Table 10.14). Dimethyl methyl phosphonate (DMMP) is a multifunctional molecular additive acting as an antiplasticiser, processing aid and flame retardant in cross-linked epoxies. In a variety on the theme, some multifunctional antioxidants, such as the high-MW Chimassorb 944, combine multiple functions in one molecule. Adhikari et al. [7] have presented a critical analysis of seven categories of multifunctional rubber additives having various combinations of antidegradant, activator, processing aid, accelerator, antioxidant, retarder, curing agent, dispersant, and mould release agent functions.

In analogy to plastics additives, paper coating additives are distinguished in as many as twenty-one functional property categories (for dispersion, foam and air entrainment control, viscosity modification, levelling and evening, water retention, lubricity, spoilage control, optical brightness improvement, dry pick improvement, dry nub improvement and abrasion resistance, wet pick improvement, wet rub improvement, gloss-ink hold-out, grease and oil resistance, water resistance, plasticity, fold endurance, electroconductivity, gloss improvement, organic solvent coating additives, colouring), even excluding those materials whose primary function is as a binder, pigment or vehicle [8].

Typical technology questions raised by plastic producers and manufacturers and directed at the additive supplier are given in Table 1.2, as exemplified in the application of injection moulding of polyamides. These problems may be tackled with appropriate addition of chain extenders and cross-linking agents, nucleating agents and lubricants, release agents, reinforcements, etc.

There are now far more categories of additives than a few decades ago. The corresponding changes in additive technology are driven partly by the desire to produce plastics which are ever more closely specified for particular purposes. The *benefits* of plastics additives are not marginal. As outlined before, they are not simply optional extras but essential ingredients, which make all

4 Introduction

Table 1.1 Main functions of polymer additives

Polymerisation/chemical modification aids

Accelerators Cross-linking agents

Chain growth regulators Promoters

Compatibilisers

Improvement in processability and productivity (transformation aids)

Defoaming and blowing agents

Flow promoters

Release agents

Surfactants

Plasticisers Thixotropic agents, thickening agents

Processing aids Wetting agents

Slip agents and lubricants (internal and external)

Increased resistance to degradation during processing or application

Acid scavengers Metal deactivators

Biostabilisers Processing/thermal stabilisers

Light/UV stabilisers

Improvement/modification of mechanical properties

Compatibilisers Impact modifiers (elastomers)

Cross-linking agents

Fibrous reinforcements (glass, carbon)

Fillers and particle reinforcements

Nucleating agents

Plasticisers or flexibilisers

Improvement of product performance

Antistatic agents Friction agents
Blowing agents Odour modifiers
EMI shielding agents Plasticisers
Flame retardants Smoke suppressants

Improvement of surface properties

Adhesion promoters Lubricants

Antifogging agents Slip and antiblocking agents

Antistatic agents Surfactants
Antiwear additives Wetting agents
Coupling agents

Improvement of optical properties

Nucleating agents Pigments and colorants

Optical brighteners

Reduction of formulation cost

Diluents and extenders Particulate fillers

 Table 1.2
 Technology questions related to injection moulding of polyamides

- · Short cycle times
- · Better mould release
- Plate-out and deposits on moulds and plastics surfaces
- Feeding problems
- Increased dimensional stability, less shrinkage
- Processing protection against depolymerisation and yellowing
- · Better melt flow
- · Improved surface of glass-reinforced parts
- · Better strength of flow lines in moulded parts
- · Higher molecular weight
- Rise of impact strength and elongation at break

the difference between success and failure in plastics technology. Typically, PVC is a material whose utility

is greatly determined by plasticisers and other additives. The bottom line on the use of any additive is a desired level of performance. The additive package formulation needs to achieve cost effectively the performance required for a given application. In this respect we recall that early plastics were often unsatisfactory, partly because of inadequate additive packages. In the past, complaints about plastics articles were common. Use of additives brings along also some potential disadvantages. Many people have been influenced by a widespread public suspicion of chemicals in general (and additives in particular, whether in foods or plastics). Technological actions must take place within an increasingly (and understandably) strict environment which regulates the potential hazards of chemicals in the workplace, the use of plastics materials in contact

with foodstuffs, the possible side-effects of additives as well as the long-term influence of the additives on the environment when the product is recycled or otherwise comes to final disposal.

Concerns are expressed by legislation and regulations, such as:

• General Health & Safety

Fitness for purpose (food/water contact materials, toys, medical)

Montreal Protocol

Blowing agents for foams

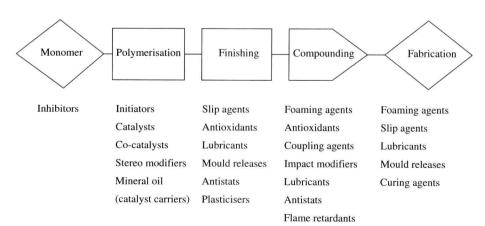
EU Directives

Food contact

· Landfill Directives

Disposal, recycling

• Life Cycle Analysis Realistic evaluation of product use (flame retardants, volatiles, etc.).


All additives are subject to some form of regulatory control through general health and safety at work legislation. From an environmental and legislative point of view three additive types in particular experience pressures, namely halogen-containing flame retardants (actions pending), heavy metals (as used in pigments and PVC stabiliser systems), and plasticisers. The trend towards the incineration of plastics, which recovers considerable energy for further use, leads to concern and thought about the effects of any additives on the emissions produced. Environmental issues often have beneficial consequences. The toxicity of certain pigments, both in plastics and in paints, has been a driving force for the development of new, safer pigments with applications in wider areas than those originally envisaged. Where food contacts are the issue, the additives used must be rigorously tested to avoid any tainting of the contents of the packaging. On the whole, the benefits of additives far outweigh the disadvantages.

PLASTICS FORMULATIONS 1.2

Plastic additives are a diverse group of specialty chemicals that are either incorporated into the plastic product prior to or during processing, or applied to the surface of the product when processing has been completed. To a great extent, the selection of the appropriate additive is the responsibility of the plastic processor or the compounder carrying out the modification. Scheme 1.1 illustrates the use of typical additives in the process from polymerisation to product manufacturing.

Figure 1.1 describes the interrelationships between the players in plastic materials manufacturing, which is considerably more complex than for the coating industry. The product performance specifications are defined by the end-users. Specialty additives demand is nowadays migrating to compounders, converters and distributors.

The rubber industry was the original user of additives. Rubber is a thermosetting polymer, which classically requires curing (peroxides), in a reaction which must be controlled by initiators (e.g. sulfur compounds), accelerators (e.g. aniline), retarders, etc. The whole compounding and moulding process is to be controlled by antioxidants and antiscorch agents to prevent decomposition. Plasticisers are added to improve processability, and adhesion promoters may be added to improve the bonding with reinforcement. To protect cured rubber products during lifetime, other additives are introduced into the compound to confer resistance to ozone, ultraviolet and internal heat build-up (hysteresis) as the compound is stressed. Other vital components of a final rubber compound are fillers as reinforcing agents, pigments, and extenders (essentially low-cost fillers).

Scheme 1.1 Exemplified application of additives in various stages of the production process of a polymeric material