ENGINEERING
- POLYMER
QOURCEBOOK

RAYMOND B. SEYMOUR

| o o A YRR L A i il it a i f
i | I I3 ‘ | i i ~}A 5 l, \ | 1 {
LEE B | ‘. & - g'. '- "- “ "‘ufhﬂhﬁj.ﬂ.nlg.}'is"“ -




Engineering
Polymer
Sourcebook

Dr. Raymond B. Seymour
Distinguished Professor,

Department of Polymer Science,

The University of Southern Mississippi

McGraw-Hill Publishing Company

New York St. Louis San Francisco Auckland Bogota
Caracas Hamburg Lisbon London Madrid Mexico
Milan Montreal New Delhi Oklahoma City

Paris San Juan Sao Paulo Singapore

Sydney Tokyo Toronto



Library of Congress Cataloging-in-Publication Data

Seymour, Raymond Benedict,
Engineering polymer sourcebook / Raymond B. Seymour.

p. cm.

Includes bibliographies and index.

ISBN 0-07-056360-8

1. Polymers. I. Title.
TP156.P6S44 1990
668.9—dc20 89-35066

CIP

Copyright © 1990 by McGraw-Hill, Inc. All rights reserved. Printed
in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission

of the publisher.

1234567890 DOC/DOC 89432109

ISBN 0-07-05k3k0-8

The editors for this book were Robert W. Hauserman and Lucy
Mullins, the designer was Naomi Auerbach, and the production
supervisor was Richard A. Ausburn. It was set in Century Schoolbook.
It was composed by the McGraw-Hill Publishing Company
Professional and Reference Division composition unit.

Printed and bound by R. R. Donnelley & Sons Company.

Information contained in this work has been obtained by McGraw-
Hill, Inc., from sources believed to be reliable. However, neither
McGraw-Hill nor its authors guarantees the accuracy or complete-
ness of any information published herein and neither McGraw-
Hill nor its authors shall be responsible for any errors, omissions,
or damages arising out of use of this information. This work is
published with the understanding that McGraw-Hill and its au-
thors are supplying information but are not attempting to render
engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be
sought.

For more information about other McGraw-Hill materials,
call 1-800-2-MCGRAW in the United States. In other
countries, call your nearest McGraw-Hill office.



Engineering
Polymer
Sourcebook



Foreword

The advancement of polymers as materials of construction has been
dependent, to a large extent, on the synthesis and modification of many
different high-performance polymers which have been described in many
outstanding books on this subject.

However, since many design engineers have not been trained in the
field of polymer science and technology, their attempts to choose and use
polymers are hampered by the absence of engineering-oriented polymer
science reference books.

Fortunately, Professor Seymour has helped to fill this void by authoring
this Engineering Polymer Sourcebook. | am impressed by the scope of
the contents of this book and recommend it to those who are seeking
more design information on these essential high-performance materials.

Herman F. Mark



Preface

Although they may not have been used for engineering applications, such
as gears and structural members, many polymers used prior to World War
Il were low-grade engineering polymers. If we exclude strong, natural
polymers, such as wood and cotton, the most noteworthy ancient derivative
of natural polymers was leather, which has been called “the most historic
of useful materials.” The primitive techniques used several thousand years
ago have been improved, but the modern tanning process is similar to
that used by our ancestors a few millennia ago.

It has been recorded that bitumens, which were called slime, were used
as caulking materials to waterproof Noah’s Ark, Moses’ basket, and ancient
water tanks. These low-grade engineering applications may be overlooked
today, but they were essential for survival of the inhabitants several thou-
sand years ago.

Likewise, the vulcanization of rubber for the production of flexible and
hard rubber and the plasticization (flexibilization) of cellulose nitrate for
the production of moldable celluloid, cellulose nitrate coatings, and artificial
fibers in the nineteenth century may not be considered engineering “break-
throughs,” but these products were essential for waterproofing textiles,
protecting metal surfaces, providing molded articles, and for producing
continuous filaments.

Some polymer technologists exclude thermosets in their list of engi-
neering polymers. However, Glyptal, which was produced by the esteri-
fication of glycerol by phthalic anhydride, and Bakelite, which was
produced by the reaction of phenol and formaldehyde, are thermosets
which can definitely be classified as engineering polymers. Hence, both
high-performance thermosets and high-performance thermoplastics will
continue to have engineering applications and are discussed in this book.

Several good books, which emphasize the chemistry of engineering
polymers, have been published. These are listed as references, and, of
course, some chemistry is included in this book. However, the emphasis
is on design, processing, fabrication, and application of these unique mod-
ern materials of construction.

Raymond B. Seymour
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Chapter

History of the
Development of
Engineering Polymers

1.1 Introduction—Scope

This book concerns engineering polymers, which may be thermoplas-
tic or thermosetting polymers that maintain their dimensional stabil-
ity and their major mechanical properties in the temperature range of
0 to 100°C.

Other criteria for engineering polymers include moldability and a
good balance of mechanical properties which is maintained for a long
time over a wide range of environmental conditions. These polymers,
which may be natural or synthetic, are the counterparts of traditional
engineering materials, such as metals and ceramics.

The term “engineering polymers,” which is interchangeable with
the terms “high-performance polymers” and “engineering plastics,” is
subject to a variety of other criteria and interpretations. The editorial
steering committee of the American Society for Metals (ASM Interna-
tional) has defined the term “engineering plastics” as a synthetic poly-
mer resin-based material that has load-bearing characteristics and
high-performance properties which permit it to be used in the same
manner as metals and ceramics. However, contrary to the ASM defi-
nition, some natural polymers are included in this book on engineer-
ing polymers. Engineering plastics have also been defined as plastics
which lend themselves for use in engineering design, such as gears
and structural members.

The major products produced by the polymer industry are general-
purpose plastics, such as polyethylene, polypropylene, polyvinyl chloride,
and polystyrene. Because of their relatively low strength and lack of re-

1



2 Chapter One

sistance to moderately high temperatures, these widely used plastics are
not classified as engineering polymers. However, some copolymers of sty-
rene do meet the criteria for low-grade engineering polymers.

1.2 Natural Polymers

High-performance polymers are not new. Nature has been generous in
supplying us with abundant quantities of tropocollagen, which is the
major component of skin, tendons, cartilage, bone, and teeth. Keratin,
which is found in hooves, nails, and claws of animals, and in beaks of
birds, and fibroin, which is the principal constituent of silk, have also
served as moderately high performance polymers for thousands of
years. Also, nucleoproteins, which are not defined as high-per-
formance polymers, are essential for our very existence.

Wood, which is a composite of cellulose and lignin, is also a moder-
ately high performance material. Fire, which ranks next to the wheel
as humankind’s most significant discovery, would have had little im-
pact unless wood was available as fuel. A century ago, wood was still
our major source of energy, and this renewable resource continues to
be an important structural material.

There are very few other materials with the characteristic elasticity of
natural rubber (NR; Hevea braziliensis); hence, natural rubber should
be classified as a high-performance polymer. Since many of today’s high-
performance polymers are blends, it is of interest to note that a blend of
cis hevea rubber and trans gutta-percha plastic was patented and used as
a cable coating in 1846. [The cis and trans prefixes describe the position
of chain extensions on the ethylenic double bonds CH=CHZ-- in poly-
meric dienes. Dienes contain two double bonds.]

1.3 Pre-World War | Polymers

Nelson Goodyear, a brother of Charles Goodyear, patented hard rub-
ber (ebonite) in 1851. This pioneer inventor’s manufactured thermoset
was used for dental prosthetics, combs, and battery cases. (A thermo-
setting plastic is one that does not dissolve in solvents and is not soft-
ened when heated.) Cellulose nitrate, plasticized, i.e., flexibilized, by
camphor, was the pioneer manufactured thermoplastic (Celluloid). It
was patented by two brothers, 1. S. and J. W. Hyatt, in 1870. (In con-
trast to the thermosets, thermoplastics are soluble in selected solvents
and may be heated and cooled, reversibly, without decomposition.)
Few of the early applications of cellulose nitrate were structural, but
its subsequent use as an automotive lacquer (Duco) is a relatively
high performance application.

Polyesters, which had potential as high-performance polymers,



