

Volume 6

Advances in Information Systems Science

Edited by

Julius T.Tou

Center for Information Research University of Florida Gainesville, Florida

11111

The Library of Congress cataloged the first volume of this title as follows:

Advances in information systems science. v. 1-

New York, Plenum Press, 1969-

v. illus. 24 cm.

Editor v. 1- J. T. Tou.

1. Information science-Collections.

I. Tou, Tsu-lieh, ed.

Z699.A1A36

029.7

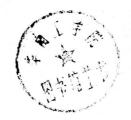
69-12544

Library of Congress

171

Library of Congress Catalog Card Number 69-12544 ISBN 0-306-39406-5

©1976 Plenum Press, New York A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011


All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Printed in the United States of America

Advances in Information Systems Science

Volume 6

Contributors

V. E. Kotov

Computer Center, Siberian Branch Academy of Sciences of the USSR Novosibirsk, USSR

A. S. Narin'yani

Computer Center, Siberian Branch Academy of Sciences of the USSR Novosibirsk, USSR

G. Rozenberg

Institute of Mathematics
Utrecht University
Utrecht-DeUithof, The Netherlands
and
Department of Mathematics
University of Antwerp, UIA
Wilrjk, Belgium

A. Salomaa

Department of Computer Science University of Aarhus Aarhus, Denmark

Władysław M. Turski

Institute of Mathematical Machines—MERA Warsaw, Poland

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

Contents of Earlier Volumes

Volume 1 |

Chapter 1: Theory of Algorithms and Discrete Processors V. M. Glushkov and A. A. Letichevskii

Chapter 2: Programming Languages

Alfonso Caracciolo di Forino

Chapter 3: Formula Manipulation – The User's Point of View M. E. Engeli

Chapter 4: Engineering Principles of Pattern Recognition

Julius T. Tou

Chapter 5: Learning Control Systems K. S. Fu

Volume 2

Chapter 1: Learning Systems
Ya. Z. Tsvpkin

Chapter 2: Stochastic Computing Systems B. R. Gaines

Chapter 3: Semantics of Programming Languages
J. W. de Bakker

Chapter 4: Information Storage and Retrieval Systems

Michael E. Senko

Chapter 5: Some Characteristics of Human Information Processing

Earl Hunt and Walter Makous

Volume 3

Chapter 1: Pattern Recognition: Heuristics or Science? V. A. Kovalevsky

Chapter 2: Feature Compression
Satosi Watanahe

Chapter 3: Image Processing Principles and Techniques J. K. Hawkins

Chapter 4: Computer Graphics
R. J. Pankhurst

Chapter 5: Logical Design of Optimal Digital Networks by Integer Programming Saburo Muroga

Volume 4

- Chapter 1: Augmentation of Machine Language Level V. K. Smirnov
- Chapter 2: On the Relation between Grammars and Automata Michael A. Harrison
- Chapter 3: An Introduction to Information Structures and Paging
 Considerations for On-Line Text Editing Systems
 David E. Rice and Andries van Dam
- Chapter 4: An Introduction to the Structure of Time-Shared Computers

 C. Gordon Bell and Michael M. Gold
- Chapter 5: Error-Correcting Codes in Computer Arithmetic

 James L. Massey and Oscar N. García

Volume 5

- Chapter 1: Data Organization and Access Methods P. C. Patton
- Chapter 2: Design of Software for On-Line Minicomputer Applications

 James D. Schoeffler
- Chapter 3: A Survey of the Status of Microprogramming

 C. V. Ramamoorthy
- Chapter 4: Some Grammars and Recognizers for Formal and Natural Languages

 J. A. Moyne

Articles Planned for Future Volumes

David J. Farber (USA)

Design Principles of Computer Networks

Thomas Huang (USA)

Image Enhancement and Recognition by

Digital Computer

Masayuki Inagaki (Japan)

Diagnosis Techniques and Methodologies

in Digital Systems

Allen Klinger (USA)

Data Structures for Pattern Recognition

Ted G. Lewis (USA)

Hardware, Firmware, Software Technology

in Microcomputer Systems

S. K. Chang and

C. N. Liu (USA)

Design Considerations of Distributed Database

Systems

Peter Wegner (USA)

Data Structures in Programming Languages

Preface

Information systems science is rapidly advancing in many directions. Diversified ideas, methodologies, and techniques as well as applications have been conceived and developed. This series intends to discuss some of the recent advances in this field. In this volume, we cover four timely topics which are of great current interest. In each chapter, an attempt is made to familiarize the reader with some basic background information on the advances discussed. The emphasis of this volume is placed upon parallel programming, data structure models in information system design, and the principles of L systems.

One of the effective means to enhance computation performance is parallel information processing on multiprocessor systems. In Chapter 1, V. E. Kotov discusses the practical aspects of parallel programming. He is concerned with the languages and methods of parallel programming, performance analysis, and automatic synthesis of parallel programs. In Chapter 2, A. S. Narin'yani presents the formal theory of parallel computations. These two chapters attempt to correlate and classify various methods in parallel programming, thus providing the reader with a unified approach to this important subject matter.

Data structures play an important role in information system design. Chapter 3 is devoted to this topic. W. M. Turski discusses the basic notion of data morphology and presents several data structure models in information system design. A simple information retrieval scheme is used to illustrate the principles. In Chapter 4, G. Rozenberg and A. Salomaa present a comprehensive survey of the mathematical theory of L systems. This theory was originally developed for providing mathematical models to describe the behavior of simple filamentous organisms. Now, the theory of L systems has been extended and broadened to become a branch of formal language theory. Further development of this theory may advance the design concepts for information systems.

The editor wishes to express sincere thanks to the authors of this volume for their cooperation and for the timely completion of their manuscripts. In

x Preface

fact, many more of our colleagues contributed to the book than those whose names appear in the contents. Much credit is due our reviewers of the articles who provided invaluable advice and constructive criticism.

Gainesville, Florida March, 1976 Julius T. Tou

Contents

CF	hapter 1 Theory of Parallel Programming. I. Surve of Practical Aspects	<i>y</i>
	V. E. Kotov	
1.	Introduction	1
2.	Parallel Programming Languages and Methods	5
	2.1. Extensions of Sequential Programming Languages	7
	2.2. Practical Schemes and Structures for Parallel Programs .	12
3.	Scheduling Problems for Parallel Programs	17
4.	Automatic Construction of Parallel Programs	22
	4.1. Parallelization of Linear Programs	26
		29
	,	38
		48
	4.5. Concluding Remarks on Parallelization	53
	References	55
CF	napter 2 Theory of Parallel Programming. II. Surve	э у
	of Formal Models	
	A. S. Narin'yani	
1.	Introduction	58
	1.1. Notation	60
2.	The Memory	61
3.	The Operator and Database	62
		62
	3.2. Database	63
4.	Computational Processes	64
	4.1. Definition	64
	4.2. Classes of Processes	65

xii	Contents

xii	Contents	
_	The Metamodel	69
5.		69
	5.1. Metasystem	70
	5.3. Special Classes	73
	5.4. Schemata	74
6.	The Control	75
٥.	6.1. Semantic Definition	75
	6.2. Mixed Definition	76
	6.3. Syntactic Definition	77
	6.4. The Hyperoperator	82
7.	Equivalence of Computational Processes	83
	7.1. Functional Equivalence	83
	7.2. Equivalence of All Results	84
	7.3. Cell History Equivalence	85
	7.4. Data Graph Equivalence	86
	7.5. Colored Data Graph Equivalence	87
	7.6. Data-Logical Graph Equivalence	88
	7.7. Interrelationship of Equivalence Definitions	88
8.	Determinacy of Metasystems	89
9.	Equivalence of Metasystems	93
	9.1. Functional Equivalence	93
	9.2. Cell History Equivalence (h-Equivalence)	94
	9.3. Data Graph Equivalence (G-Equivalence)	96
	9.4. Survey of Equivalence Studies	96
10.	Asynchronism	97
11.	Programs and Systems	102
12.	Conclusions	106
	References	107
~.		
Cn	papter 3 Data Structure Models in Information	
	System Design	
	Wladyslaw M. Turski	
1.	Data Morphology	115
		115
		121
		125
		127

	Contents	xiii
	1.5. Storage Structures and Mappings	131 134
_	1.6. Implementation of Mappings	
2.	Data Structure Models for Simple Information Retrieval	141 141
	2.1. Thesaurus-Based System	141
	2.3. Equivalence of Two Models	145
2	Data Structures for Information Systems of Flexible Use	147
3.	3.1. Databases and Data Banks	147
	3.2. Relational Models	149
	3.3. Hereditary Models	153
4.	Conclusions	155
7.		158
	References	130
CI	hapter 4 The Mathematical Theory of L System	s
•	G. Rozenberg and A. Salomaa	
	d. Nozemberg and A. Caromaa	
0.	Introduction	161
1.	L Schemes and L Systems	164
2.	Squeezing Languages out of L Systems	166
	2.1. Exhaustive Approach	167
	2.2. Selective Approaches	167
	2.3. Comparing the Language Generating Power of Various	
	Mechanisms for Defining Languages	171
3.	Fitting Classes of L Languages into Known Formal Language	
	Theoretic Framework	172
4.	Other Characterizations of Classes of L Languages within the	
	Framework of Formal Language Theory	174
	4.1. Closure Properties	174
	4.2. Machine Models	174
	4.3. Recurrence Systems and Recursion Schemes	176
5.	Structural Constraints on L Systems	176
6.	Squeezing Sequences out of L Systems	177
7.	Growth Functions	178
	7.1. Definitions and Basic Problems	178
	7.2. DOL Growth: Equivalence, Analysis, Synthesis	180
	7.3. DIL Growth	183
	7.4. Length Sets	184

xiv Contents

8.	Decision Problems	185
	8.1. Some Decidability and Undecidability Results	185
	8.2. DOL Equivalence Problem	186
9.	Global Versus Local Behavior of L Systems	187
10.	Deterministic Versus Nondeterministic Behavior of L Systems	189
11.	L Transformations	190
12.	Getting Down to Properties of Single L Languages or Sequences	191
13.	Generalizing L System Ideas: Toward a Uniform Framework	193
14.	Some Proof Techniques	195
15.	Conclusions	203
	References	
•		
na	lex	207

THEORY OF PARALLEL PROGRAMMING. I. SURVEY OF PRACTICAL ASPECTS[†]

V. E. Kotov

Computer Center, Siberian Branch Academy of Sciences of the USSR Novosibirsk

1. INTRODUCTION

The search for ways to enhance the performance of computer equipment eventually led, in the 1950s, to the notion of parallel data processing on multiprocessor parallel computer systems. These systems are made up of a number of computing units known as processors. Each processor executes, concurrently with the others, some fragment of the computation; the result produced by one processor can be made accessible to the others for further processing. The structure and organization of a multiprocessor computer system can vary: The processors may be of the same type or have different properties; each of the processors may have its own memory and they may exchange data over permanent or dynamically assigned channels, or the processors may all access one central memory through which data are exchanged; supervisory control of the concurrent operation of and exchange of information between processors may be centralized or allocated among the processors; finally, the system may have a hierarchic structure, in which each processor may be organized as a multiprocessor system.

The programming of problems for multiprocessor systems falls under the heading of *parallel programming*, to distinguish it from "conventional" sequential programming for single-processor computer equipment.

The first steps in the investigation of parallel computations, including the comparative analysis of computer system structure and the choice of

[†] The survey of parallel programming theory is presented as Chapters 1 and 2 of this volume. It was completed in 1972, and the Russian version was published in *Kibernetika*, Nos. 1-3 and 5, 1974.

2

methods of parallel program synthesis for specific systems, were made in the early 1960s by Gill (46), Estrin and others (38-40), Martin (78), Evreinov and Kosarev (41-43), Conway (24), and others. The papers published in that period were generally of an ideological character; those years saw the formulation of the main problems and lines of development for parallel programming. During the same period the first multiprocessor systems oriented toward special classes of problems were conceived and elaborated.

In the same period the theory of sequential programming evolved into an independent mathematical discipline, based on the fundamental work of A. A. Lyapunov, Yu. I. Yanov, A. P. Ershov, and J. McCarthy in the fifties. A formal apparatus was created for the investigation of the programs and computations as well as the transformation of programs, and, most important, the methodology was developed for theoretical research on programming on the basis of the results and methods of mathematical logic, algorithm theory, algebra, graph theory, and mathematical linguistics.

In the mid-sixties the theory of parallel computations began developing within the framework of programming theory. This theory is concerned with a broad spectrum of problems that arise in the programming and solution of problems on multiprocessor systems, ranging from the purely combinatorial problems associated with the allocation of tasks among processors to the construction of general mathematical models of parallel computations. It is important to note that parallel programming theory grew up under more favorable conditions than sequential programming theory, since by this time the latter had acquired a wealth of research tools and methods, which were used with great success in the theory of parallel programming. On the other hand, the growth of this theory was held back by the absence of a well-developed parallel computation practice.

Today parallel programming theory boasts a rich bibliography covering a broad sphere of problem areas. On reviewing the papers in this field, one is first struck by the enormous diversity of methods, styles, and approaches to the solution of what are more or less identical problems, as well as the lack of a common conceptual apparatus and a unified philosophy. This situation, of course, is a consequence of the considerable complexity and newness of the subject. At the same time, parallel programming theory is approaching the milestone in its development where, under the influence of the growing demands of practice, the need is mounting for the con-

[†] The references for both parts of the survey are given at the end of Chapter 2. By no means is the list meant to be an exhaustive bibliography on parallel programming theory; however, it does contain papers that are not mentioned in the text of the survey.

solidation and critical interpretation of the accumulated materials and points of view. There must be a concerted effort to develop adequately general methods and concepts and to define the fundamental problems and avenues for the further development of the theory.

We delineate (admittedly, more or less conditionally) the following four areas in which to group the majority of papers on parallel programming theory:

- 1. Parallel programming methods and languages. The objective in this group of papers is to formulate practical languages for parallel programming.
- 2. Scheduling aspects of parallel computations, including determination of their quantitative characteristics (execution waiting times, estimation of the required number of processors, etc.) and the *a priori* and dynamic allocation of program fragments among system processors.
- 3. The automatic synthesis of parallel programs, including the discovery of internal parallelism inherent in sequential programs and the creation of algorithms for the transformation of sequential programs into parallel programs.
- 4. General (or formal) parallel computation theory, the scope of which includes formal models of parallel programs and systems with which to investigate the general properties of parallel computations such as equivalence, determinacy, and degree of parallelism.

This chapter is the first part of a critical survey of the current state of parallel programming theory and is concerned with the practical, informal aspects of the theory, namely, the languages and methods of parallel programming, performance analysis, and the automatic synthesis of parallel programs (parallelization). Chapter 2, by A. S. Narin'yani, presents the second part of the survey, dealing with the problems and results of the formal theory of parallel computations. The decision to segregate the survey into two independent parts was motivated by the considerable subject matter and stylistic dissimilarity of papers dealing with the formal theory and papers in the other three groups, as well as the need to "parallelize" the work of the two authors in writing the survey due to the vastness of the material to be covered.

The chief aim of the survey as a whole is to inform the reader of the fundamental problems, results, and methods in parallel programming theory and to try to correlate and classify them from a unified point of view,