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Towards Integrated Process Supervision:
Current Status and Future Directions

Venkat Venkatasubramanian
Laboratory for Intelligent Process Systems, School of Chemical Engineering,
Purdue University, W. Lafayette, IN 47907, USA.

Abstract Process supervision deals with tasks that are executed to operate a process plant safely and
economically, These tasks can be classified as data acquisition, regulatory control, monitoring, data
reconciliation, fault diagnosis, supervisory control, scheduling and planning. While these operational tasks
may be intrinsically different from each other, they are, however, closely related and can not be treated in
isolation. Hence, there exists a clear need for an integrated framework so that the operational decision-making
can be made more comprehensively and effectively. While such an integrated approach is very compelling and
desirable, achieving it is no simple task as there are many challenges in realizing integration. In this paper, we
review these challenges and indentify the underlying issues which need to be addressed for achieving an
integrated approach to process supervision. We discuss the role of artificial intelligence in this context and
how it provides a problem-solving platform for integration. We also survey the current status of automated
approaches to operations and conclude with some thoughts on future directions.

Key Words. Artificial intelligence; Failure detection; Integrated plant control; Monitoring

1. INTRODUCTION

Integrated process supervision is the overall,
coordinated, management of different operational tasks
in a process plant. These operational tasks can be
hierarchically categorized as data acquisition,
regulatory control, monitoring, fault diagnosis,
supervisory control, scheduling and planning. The
lower level of the hierarchy involves layers that deal
with tasks such as data acquisition and reguiatory
control. At the intermediate level, one has layers for
the tasks of monitoring, data reconciliation,
diagnosis, and supervisory control. At a higher level,
one has the layers that perform plant-wide
optimization, scheduling and planning of process
operations. At the lower level, the perspective is
local in character, like that of a regulatory controller
which is limited to implementing a functional
relationship (e.g. the control law) between the
manipulated and controlled variables. The
intermediate level is concerned with coordination
between units, unit optimization and monitoring of
production and operating constraints. It also performs
fault diagnosis and suggests recovery from these
malfunctions. At the higher level, the perspective is
more global in character, like that of planning of
process operations.

The overall problem of integrated process supervision
involves several subproblem areas that are related to
each other and can not really be treated as individual

problems in isolation. For example, low-level
events such as controller failure or some other
equipment malfunction, can have a significant
impact on the higher-level plans by calling for the
revision of planned schedules. Likewise, higher level
decisions have a serious impact on lower level
activities such as supervisory and regulatory control.
In the case of data reconciliation, traditionally one
does not consider parameter drifts and structural faults
as part of the problem. However, an integrated view
is necessary for reconciliation of measured data in the
presence of process faults. Thus, while these
operational tasks may be intrinsically different from
each other, they are, however, closely related to each
other and can not be treated as isolated tasks. Hence,
we need an approach wherein al] these different tasks
can be integrated into a single unified framework and
so that the operational decision-making can be made
more comprehensively and more effectively.

Over the years, a variety of tools and techniques have
been developed to address these tasks. They include
process modeling and simulation techniques, large
scale linear and nonlinear optimization methods,
advanced model-based and knowledge-based process
control techniques, model-based data reconciliation
methods, and statistical, neural net-based and
knowledge-based fault detection and diagnosis
methods. While no single tool or technique can
solve the entire process supervision problem by
itself, the proliferation of disparate tools imposes
barriers to task integration by fragmenting system



implementation as well as the solution process.
Such fragmentation also impedes the understanding
of the results and complicates their communication
and implementation. This is one of the key
challenges towards integration.

While an integrated approach is very compelling and
desirable, achieving it is no simple task as there are
many challenges in realizing integration. The intent
of this survey paper is not so much to provide the
answers but to try to identify the key challenges
faced, the related fundamental issues, and review the
current status and the emerging trends. In this
perspective, we will also examine the role of
artificial intelligence in integration. Since the scope
of this exercise is very broad, we will mainly focus
our discussion on the integration of low-level and
intermediate-level tasks, namely, the tasks of
regulatory control, data reconciliation, monitoring,
diagnosis, and supervisory control in this paper.

2. PROBLEM SOLVING PARADIGMS IN
PROCESS SUPERVISION

The common problem-solving paradigms that
underlie integrated process supervision can be
categorized as pattern recognition and classification,
symbolic reasoning, and optimization. Many of the
taks in process supervision can be handled in
different ways. For example, process fault detection
can be treated as a statistical classification problem
where one tests a measurement against a null
hypothesis that the process is normal. Alternatively,
by considering a fault to be a parameter disturbance,
fault diagnosis can be treated as a parameter
estimation problem [Isermann, 1984). Yet another
view is to treat fault diagnosis as a classification of
measurement data into fault groups using neural
networks. In addition, we also have qualitative
methods for fault diagnosis that use causal models of
the process to search for the source of abnormality.
This is a symbolic reasoning problem. Thus, the use
of quite different solution methodologies for the same
problem poses serious challenges towards integration.
Since this is a central issue in integration, a better
understanding of these problem solving paradigms in
terms of their domain of application, types of
problems that can be solved using these techniques,
advantages and disadvantages is essential. To this end,
a brief overview of these various problem-solving
paradigms is provided in this section.

2.1. Pattern classification approach:

Syntactic pattern recognition is concerned with
classifying symbolic information into a given set of
classes. The classification task may be guided by a
set of rules or grammar that defines the membership
relationships or mapping between the patterns and
the classes. Alternatively, one could specify this
guiding information by a causal model (e.g., in the
case of diagnosis) or in general by a set of
constraints. Statistical pattern classification, on the

other hand, is concerned with classifying numeric
information into a given set of classes. Many
problems in process operations can be categorized
into one of these classification tasks. For example,
reasoning about the cause of an abnormality in a
process behavior can be considered as a syntactic or
statistical pattern classification problem:

» Classifying sensor measurements into one of the
fault classes. This is considered as a syntactic
classification problem when the reasoning is based
on causal models. It is statistical classification,
when the numeric values of the measurements are
used.

+ Classifying temporal trends of sensor
measurements into one of the known classes. Time
series information of the sensors can be used directly
for statistical classification or an abstracted syntactic
representation of the measurements for symbolic
reasoning purposes.

« Data reconciliation can be posed as a statistical
classification problem where one tests a measurement
against a null hypothesis to detect any gross sensor
faults. In the absence of any gross errors, the data is
then rectified to reduce the effect of random noise.

« In modeling for control, composite models can be
developed by using classification. For example,
choosing the proper model to use can be decided based
on the operating regime the process is in and this can
be solved as a pattern classification problem.

2.2. Symbolic reasoning approach:

In symbolic reasoning, one often addresses three
different kinds of reasoning. They are abductive,
inductive and default reasonings. Abduction is the
generation of a hypothetical explanation (or cause) for
what has been observed. Unlike simple logical
deduction, we can get more than one answer in
abductive reasoning. Since there is no general way to
decide between alternatives, the best one can do is to
find a hypothesis that is most probable. Thus,
abduction can be thought of as reasoning where we
weigh the evidences in the presence of uncertainty.
Searching for the cause of an abnormality in a process
system is thus an abductive reasoning. In MODEX2
[Venkatasubramanian and Rich, 1988], a model based
expert system for fault diagnosis, abductive reasoning
is used to generate hypotheses for the sources of
faults. In addition, abduction also provides
explanations of how the cause could have resulted in
the abnormality observed. Such a facility is useful in
providing decision support to plant operators. Use of
proper knowledge representation technique matters a
great deal in determining the computational effort.
Model based reasoning allows for efficient bottom-up
abduction by suggesting proper rules to try out.
Efficiency of such bottom-up search in abduction is
considerable [Charniak and McDermott, 1984].



Early work in learning concentrated on systems for
pattern classification and game playing. Inductive
learning is the classification of a set of experiences
into categories or concepts. Inductive learning is
performed when one generalizes or specializes a
concept definition learned so that it includes all
experiences that belong to the concept and exclude
those that do not. The clear definition of a concept or
category is rarely simple because of the great variety
of experiences and uncertainty (noisy data or
observations). For this reason, one prefers an
adaptive learning scheme. An example of such an
adaptive learning scheme is failure-driven learning.
Failure-driven learning is refining a concept from
failures of expectations as one accumulates related
experiences. The failure of heuristic judgement in
detecting a source of malfunction in fault diagnosis
can trigger a change in the knowledge (or rule) that
resulted in the judgement [Rich and
Venkatasubramanian, 1989]. Experiences with
abnormalities in a plant can be used to generate rules
that relate a set of observations with specific causes.
One can refine this experiential knowledge over time
by generalizing to successful cases not covered and
specializing when exceptions are noticed.

One frequently makes default assumptions on the
values of various quantities that are manipulated, with
the intention of allowing specific reasons for other
values to override the current values (e.g. since the
outlet is blocked, the flow is now zero), or of
rejecting the default if it leads to an inconsistency
(e.g. since the outlet of the tank is blocked, there
cannot be a decrease in tank level). A fundamental
feature of default reasoning is that it is
nonmonotonic. In traditional logic, once a fact is
deduced, it is considered to remain true for the rest of
the reasoning. This is what one means by
monotonic. However, as new evidence arises, often
one needs to revise the deduced facts to maintain
logical consistency. Let us consider our previous
argument where we deduced that the tank level cannot
decrease (since the outlet of the tank is blocked).
After this deduction, if we get new evidence that the
tank has a large leak, we will have to retract the
conclusion that the tank level cannot decrease. Such
a reasoning where retraction of deductions is allowed
is nonmonotonic. Default reasoning or
nonmonotonic reasoning is an invaluable tool in
dealing with situations where all the information is
not available at a time or if one has to reason about
many, probably inconsistent, cases simultaneously.
Reiter [1987] has shown how default logic can be
used for reasoning about multiple faults or causes for
an abnormality. Reasoning with assumptions
explicitly is a related concept [Kavuri and
Venkatasubramanian, 1992).

2.3. Optimization approach:

Optimization problems in process operations such as
model identification fall under the continuous case,
while problems such as allocation of plant resources
requiring discrete decisions are combinatorial
optimization problems. For example, plant-wide

scheduling and optimization in the continuous case
and assignment and allocation of plant resources in
cases which require the sharing of manufacturing
resources between different products are examples of
optimization problems in planning. Other examples
are:

* Management of inventories and maintenance
planning.

* Online estimation of process model, for
optimization and model-based process control, data
reconciliation, parameter estimation for fault
diagnosis.

* Online prediction of the performance of an operating
plant.

* Online optimization of control profiles in batch and
continuous operations.

Most of the planning problems which are discrete
optimization problems are usually solved off-line and
hence one can try to solve really large problems. In
contrast, most of the continuous optimization
problems have to be solved on-line and hence
computational effort becomes an important
consideration here. Other concerns include
convergence problems in multi-dimensional search
spaces and local minima problems in continuous
nonlinear optimization problems.

3. INTEGRATED PROCESS SUPERVISION:
CHALLENGES AND THE ROLE OF Al

Though an integrated framework is very attractive in
terms of the benefits it can provide, there are a
number of conceptual and implementational
challenges that have to be overcome before an
industry-wide following of this approach takes place.
This section discusses the key requirements and the
role of Al in addressing these challenges.

i. It is necessary to reason about process operations
without assuming accurate models.

In most cases, plant behavior is not accurately
known. Even rigorous models are not adequate to
predict plant behavior with satisfying accuracy.
Furthermore, configuration of plants change during
their lifetime. Process operating conditions may
vary with the demands for different products produced
in the plant. All of these force the operators to make
their operating decisions with approximate models of
process behavior. Al provides us with techniques for
developing qualitative and approximate models,
doing inexact reasoning, etc. to cope with situations
such as this.

ii. It is necessary to reason with incomplete and/or
uncertain information about the process.

Operators often face situations where they receive
conflicting information about the status of the
process or the various process units. This could be
due to faulty sensors, for example. Also, they often
deal with situations when all the information needed



about the process may not be available. Thus,
operators are forced to reason and make assessments
about the process with incomplete and/or uncertain
data. Realizing these operational constraints in
practice and having a means to handle
incompleteness and uncertainty is essential to the
decision making process. Again, artificial
intelligence techniques play a useful role in handling
this requirement of an automated system.

iil. It is necessary to understand, and hence represent,
process behavior at different levels of detail
depending on the nature of the task.

The amount of information that is available to the
operator is often sufficient to understand the essentials
of the behavior of a process. However, the
voluminous data results in an information clutter and
the operator is now faced with the task of gleaning
the important features he needs from this vast amount
of data. Information from process measurements,
perhaps over an entire month, needs to be organized
so that he can get a more global picture of a section
or the overall plant easily. Given the large size of
plants and different information requirements of tasks,
it 1s necessary to reason with knowledge at different
levels of detail. Reasoning with knowledge at
different levels of detail is a difficult task as one has
to carefully ensure the consistency of the information
at different levels of detail. Given the information
clutter, it is inevitable that the operator have some
way to look at the required information in a compact
way. For example in a process plant, there may be
as many as 1500 process variables observed every two
seconds for behavior during a selected period [Bailey,
1984]. The trends are displayed on monitors and there
can be two, four or eight process variables displayed
per screen at any one time. This dictates the need for
a hierarchic organization from process subsystems to
loop clusters down to single loops. This also
emphasizes the need for an automated framework for
extracting important qualitative features of process
behavior from raw sensor data. Powerful knowledge
representation and pattern classification techniques of
Al are indispensable for this problem.

iv. It is necessary to make assumptions about a
process when modeling or describing it. One has to
ensure the validity and consistency of these
assumptions.

When a process unit is described by a model, the
model is constructed based on some assumptions,
mostly assumptions of normal behavior. However,
in diagnostic applications, these assumptions may
be violated. In order to avoid inconsistencies, it is
necessary to explicitly consider and change the model
and the assumptions during the reasoning process.
What is needed is a representation of the process
model that can represent the process behavior for a

given set of assumptions. It is necessary to
explicitly define the underlying assumptions, have a
scheme to verify the consistency of these
assumptions and choose the process model based on
these assumptions.

As an example, consider the problem of controlling
a process. The controller configuration, parameters
and the control law are determined by the
mathematical models of the process and the
controller. The success of the control scheme
crucially depends upon whether the assumptions that
underlie these models are still valid. For example,
models assume that the sensors provide accurate
information. In the case of a gross fault in the
sensor, the controller action not only becomes
ineffective but may even cause adverse process
behavior. Similarly in a hierarchical model for
process operations, the decisions made at a higher
level can have significant impact on the lower level
implementations and thus their assumptions are
crucial. Failing to detect the violation of an
assumption can result in a gross disruption of the
operations. Al provides us with the framework for
treating assumptions explicitly, thereby making the
automated system readily alert to assumptions
violation.

v. It is necessary to integrate tasks and solution
approaches. This requires integrating different
problem-solving paradigms, knowledge representation
schemes, and search techniques.

To effectively provide an integrated framework, one
needs to carefully address the knowledge
representation and search issues. It is necessary to
represent structural, functional and behavioral
information about the process. We can think of these
as three complementary sources of information each
organized hierarchically. One needs to address how
the three hierarchies are built and how they interact.
One of the key functions of such a knowledge
representation is to let one examine the process at any
preferred level of detail in any desired hierarchy. For
example, for the task of process fault diagnosis, one
is concerned with structural information within the
individual units and the overall connectivity of the
process. For planning tasks, one may take a higher-
level perspective on the process plant, lumping many
units together as a larger, abstract, input-output
module. The different tasks may employ different
problem-solving paradigms which, in turn, would call
for different representation and search strategies. All
of these need to integrated to offer a complete
perspective of process operations. Due to the character
of the issues involved in here, artificial intelligence
plays a crucial role.



vi. It is necessary to keep the role of an operator
primary and active, not secondary and passive, in the
operating environment that is managed with the
assistance of on-line intelligent systems.

While it might be acceptable to delegate all the
control to computers when we are dealing with
regulatory control problems, it might be more risky
to do so when it comes to supervisory and higher-
level decision-making. This is due to the character of
the problems and issues involved as well as due to
the limitations of current intelligent systems. In
addition, one has other concerns such as the liability
and legal aspects of this problem. Thus, it is
important to have the operators actively involved in
the decision-making process and make the on-line
intelligent systems play an advisory role. This is
also necessary to keep the operators’ skills sharp, as
otherwise their skills could deteriorate over time due
to their increased dependence on the advisory systems
as a crutch. There is a delicate balance that has to be
achieved here. Since the operator's role would be
primary, this creates special demands on the design
of the advisory systems, such as:
« simple, operator-friendly user-interfaces
+ empbhasis on visual, graphical display of
information for ease of understanding
« structured, guided access to data and knowledge
about process status and behavior
« explanatory capabilities to offer insights into
the systems reasoning and recommendations

Thus, the design of such systems should be operator-
centered, with his or her needs and capabilities in
mind. Such a perspective places considerable
emphasis on man-machine interaction issues and the
nature of the user-interface, which are important
requirements that will benefit from artificial
intelligence techniques.

One can see from this discussion that the use of Al
techniques to face these challenges is not only
desirable, but also necessary.

4. CURRENT STATUS OF AUTOMATION
IN PROCESS SUPERVISION: A BRIEF
REVIEW

The main focus of this paper is to address issues in
integrated process supervision for the low-level and
intermediate-level tasks. As mentioned before, these
tasks are: regulatory control, process monitoring,
fault diagnosis, data reconciliation and supervisory
control. In this section, the current status of
automation of these tasks are briefly reviewed.

4.1. Process Monitoring

Process monitoring refers to the task of identifying
the state of the system from sensor data. Process
trend analysis and prediction are important
components of process monitoring. Knowing the
current process trends, the causes that drive them,
and the possible future evolution of these trends are

essential for supervisory decision making. The
central issues here are representing and reasoning
with temporal evolution of process trends, multi-
scale data, sensor noise and data uncertainties, and
cause and effect models of process trends. Recent
research in this area has shown some promise for
integrated supervision applications. Stephanapoulos
recognized the importance of process trend
representation for higher-level process integration
early on and developed a formal framework. This
framework handles temporal data, reasonable
discontinuous and continuous functions, and the
abstraction of semi-quantitative and qualitative trends
{Cheung and Stephanopoulos, 1989).

Venkatasubramanian and co-workers (Janusz and
Venkatasubramanian, 1991; Rengaswamy and
Venkatasubramanian, 1992) developed a similar
approach in their qualitative representation scheme.
The fundamental element in their representation
scheme is the primitive. They use a finite difference
method to calculate the first and second derivatives of
the process trend changes and based on these values
the primitives are identified. For noisy data, neural
networks are used to extract the primitives as they
are noise-tolerant. The ability to handle noise is
incorporated in two stages. At a lower level, the
neural net-based pattern classification approach is
used to identify the fundamental features of the
trends. At a higher level, the syntactic information
is abstracted and represented in a hierarchical fashion
with an error correcting code smoothing out the
errors made at the lower level. Such syntactic
approaches are suitable for hierarchical representation
of the trend information and for developing error
correcting codes, which eliminate the effects of high
noise and outliers.

Multilevel abstraction of important events in a
process trend is possible through scale-space filtering
through the use of a bank of filters each sensitive to
certain localized region in the time-frequency domain
(Marr and Hidreth, 1980). An example of such a
filter that has been extensively used in image
processing is y?G, where G is a Gaussian
distribution (Marr and Hidreth, 1980). Another
important recent development in this area is the
emergence of wavelet-based frameworks. The recent
work of Bakshi and Stephanopoulos (1992) using
wavelet networks for representing trends shows
considerable promise.

4.2. Fault detection and diagnosis

Fault detection and diagnosis is concerned with the
detection of abnormal behavior and the identification
of their causal origins. Over the recent years, there
has been considerable progress towards the
automation of fault detection and diagnosis. A
general description of fault diagnosis would include
the following kinds of abnormalities:



Gross parameter changes in a model

In any modeling, there are processes occurring below
the selected level of detail. These unmodeled
processes are lumped as parameters. “Parameter
faults" arise when there is a disturbance entering the
process from the environment through one or more
parameters. An example of such a fault is a change
in the concentration of the reactant in a reactor feed or
the change in the activity of a catalyst.

Structural changes

Structural changes refer to changes in the model
itself. They occur due to hard failures in equipment.
Structural faults resuit in a change in the information-
flow between various variables. This corresponds to
dropping the appropriate model equations and
restructuring the other equations to describe the
current situation in the process. An example of a
structural fault would be a controller failure which
would imply that the manipulated variable is no
longer functionally dependent on the controlled
variable.

Malfunctioning sensors and actuators

Gross errors usually occur in actuators and sensors.
There could be a fixed failure, a constant bias
(positive or negative) or an out-of-range failure.
These are also important faults that need to be
identified quickly in view of the fact that some of the
instruments might provide feedback signals which
are essential for the control of the plant .

The solution strategies for fault diagnosis range from
purely qualitative to purely quantitative, with
various combinations in between. There are different
perspectives from which one can view the problem
of fault diagnosis. One can look at the fault
diagnosis problem from the perspective of the
transformations the measurements go through before
arriving at the final solution. Figure 1 shows these
transformations.
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Fig. 1. Transformations in a Fault Diagnostic
System

Measurement space is the space of sensor
measurements that is available to perform fault
diagnosis. Feature space is the space of reduced set of
features representative of the measurement space that
is developed by transforming the measurement space
using a priori knowledge about the process. A set of
decision variables are developed from the feature
space, and class space is the set of integers indexing
each individual fault and an additional integer to
represent the normal operation of the process and is

the final interpretation delivered to the user by the
diagnostic system. The transformation from feature
space to decision space is performed by a search
technique that tries to minimize the mismatch
between the actual observations and the observations
for different faulty modes, either in a qualitative or
quantitative manner. For example, symbolic
reasoning is done qualitatively where one tries to
minimize the mismatch between the observation
(sensor i is low, sensor j is high and so on) and the
template for various faulty modes. In contrast, in
parameter estimation methods the mismatch is a
least squares norm and is minimized by searching in
a parameter space that models the various faults. The
transformation from the decision space to class space
is effected using either thresholding, template
matching or symbolic reasoning as the case may be.
Hence, the two important components in a
diagnostic system are the a priori knowledge and the
search technique used.

One can view diagnostic systems from either of
these two perspectives as well. A general
classification of fault diagnostic systems can be done
based on the three different solution methods used.
They are: Knowledge-based, Analytical model-based,
and Pattern recognition-based methods. Each of
these diagnostic methods is a combination of a
particular type of a priori knowledge and a search
technique. Knowledge-based systems predominantly
use qualitative models of the process in tandem with
different search techniques. The quantitative model-
based approaches rely on mathematically
representing the inconsistencies between the actual
and expected behavior as residuals. Pattern
recognition is the task of assigning a pattern to one
of k predetermined classes. The knowledge about
these classes is usually obtained from process
history data. Under each of these general solution
philosophies there are many combinations of a priori
knowledge and search techniques and is not possible
to enumerate all these combinations. Hence, the
attempt here is to provide a flavor for some of these
methods.

Knowledge-based methods

In this subsection, knowledge-based techniques are
illustrated with the aid of some typical approaches to
fault diagnosis.

There are many approaches to the design of model-
based expert systems for chemical process fault
diagnosis. One approach is the hypothesis/test
strategy. A rigorous approach to hypothesis
formulation is the method of O'Shima and
coworkers (Iri et. al., 1979; Shiozaki et. al., 1985).



The basic premise of this approach is that, for a
fault hypothesis to be considered viable, causal
pathways must link the proposed fault origin with
all observed abnormal measurements. A signed
digraph is used as the representation of the
influences between the process variables.

Another class of model-based reasoning methods
used for diagnosis use agenda-based search
techniques. An example of this approach is
MODEX (Rich and Venkatasubramanian,1987),
which is a system developed to reason from first-
principles model-based knowledge. It extension,
MODEX?2 (Venkatasubramanian and Rich, 1988),
is a two-tiered approach using a compiled
knowledge-base at the top tier and a deep-level
causal model at the second tier.

Fault trees provide a computational means for
combining logic to analyze system faults. To
perform consistent diagnosis from fault trees, the
trees must comprehensively represent the process
causal relationships. To ensure this consistency,
causal models in the form of signed digraphs are
developed. Causal fault trees are developed from these
digraphs (Lapp and Powers, 1977). Fault trees
determine causal pathways through which primal
events (faults) can propagate through the system to
cause the top event (some significant malfunction).

Once a fault-tree is synthesized, the information from
it is stored in the form of cut sets. Cut sets
exhaustively specify all possible paths in the digraph
resulting from the fault. Kramer and Palowitch
(1989) developed a method of deriving rules for
diagnosing faults from signed digraphs. Ulerich and
Powers (1987) used digraph models to include human
operator action and failure models due to operator
action. They also illustrate how real-time data can be
used to infer events in a control loop.

Knowledge within these systems is organized as a
hierarchy of malfunction hypotheses, representing
different levels of process abstraction (Ramesh, et.
al.,, 1992). Each level of hierarchy represents an
increasing level of process detail. Under the establish-
refine strategy, a hypothesis under consideration is
evaluated by examining the knowledge-groups
associated with it. The search mechanism consists of
exploring the hierarchy in a top-down fashion and a
malfunction hypotheses is completely validated.

Analytical Model-based Approaches:

The analytical model-based approaches require
knowledge about the process in terms of either input-
output models or first principles quantitative models

based on mass and energy balance equations. Here.
the following techniques are used.

I- ion an

The main focus in observer-based fault detection and
isolation is the generation of a set of residuals which
detect and uniquely identify different faults. These
residuals should be robust in that the decisions should
not be corrupted in the face of unknown inputs.
Unknown inputs here include unstructured
uncertainties such as process and measurement noise
and modeling uncertainties. The aim of observers is
to come up with an error innovation sequence like

e(k+1) =Fe(k) - TKf(k) n
where F is the observer system matrix and T is the
input transformation matrix, and K is the fault
distribution matrix.
If no faults occur in the process, f(k) = 0 then

e(k+1) =Fe(k) @
If the absolute value of the eigenvalues of F are less
than 1, then e(k) -> 0 as k ->oo.
In the absence of any faults, this observer will track
the process independent of the unknown inputs d(k) to
the process. Hence these are known as an unknown
input observers. The necessary and sufficiency
condition for the existence of these kinds of observers
are described in Frank and Wunnenberg (1989).

Parity-Space Approach:

Parity equations are suitably arranged forms of the
input-output model of the plant. The basic idea is to
check the parity (consistency) of these input-output
models of the plant by using the sensor outputs
(measurements) and known process inputs. The idea
of the approach is to rearrange the model structure so
as to get the best isolation of the failures. Chow and
Willsky (1984) proposed a procedure to generate
parity equations from the state-space representation of
a dynamic system. Gertler and Singer (1990)
extended this to statistical isolability under noisy
conditions by defining marginal sizes for fault alarms.
All these methods are limited to failures that do not
include gross process parameter drifts. However, they
are an attractive alternative owing to their ability to
determine, a priori, isolability of different faults. A
general scheme for considering both direct and
temporal redundancy in parity equation generation is
provided by Chow and Wilsky (1986). In contrast,
voting techniques are often used in systems that
possess high degree of parallel hardware redundancy
(Willsky, 1976).

P Estimation:
Diagnosis of parameter drifts which are not
measurable directly requires on-line parameter
estimation methods. Accurate parametric models of
the process are needed, usually in the continuous
domain in the form of ordinary and partial differential



equations. Young (1981) and Isermann (1984)
surveyed different parameter estimation techniques
such as least squares, instrumental variables and
estimation via discrete-time models.

Pattern Cassification Methods:

Pattern classification using process history data is
usually performed using either statistical and non-
statistical techniques. Bayes classifier is one of the
more popular classifiers using the statistical
properties of the input data. Neural networks have
proved to be a popular non-statistical approach to
pattern recognition.

Parametric and Non-parametric Classifiers:

Statistical pattern classification methods again can be
roughly compartmentalized into two components: (i)
a priori knowledge; assumption about the form of
Probability Density Function (PDF) available, and
(ii) search technique; the classifier design. Estimation
of PDF (Fukunaga, 1972) can be classified as
parametric and non-parametric estimation and the
classifier can be also designed either in a parametric or
non-parametric fashion.

Neural Networks as Classifiers:

A lot of interest has been shown in the recent
literature in the application of neural networks for
the task of pattern classification in fault diagnosis
(Hoskins and Himmelblau, 1988; Kavuri and
Venkatasubramanian, 1994). To understand neural
networks better it helps to view them from a
statistical pattern recognition perspective. Let us
consider a standard two layer neural network. The
first layer connecting the input to the hidden nodes
tries to estimate the PDF for each class and the
second layer connecting the hidden nodes and the
output acts as a classifier. It is not surprising then
that the network based classifiers are inferior to
parametric classifiers when the density information
for the class is available. When the assumption of a
functional form for the density function could be
made, parametric classifiers are a better choice.
However, for a general classification problem, an a
priori choice cannot be made for the functional form
of the density. Moreover, the data available for the
classes may not be enough to develop
approximations to the density function, In such
cases, non-parametric classifiers such as the network
based classifiers are to be preferred.

As a general comparison of these different
approaches, one can state that knowledge-based
systems can be used where fundamental principles
based approaches are more difficult or lacking, where
there is an abundance of experience but not enough
detail available to develop accurate quantitative

models. However, they suffer from the resolution
problems resulting from the ambiguity in qualitative
reasoning. Parity space and observer-based
approaches (analytical model-based methods) are
shown to be equivalent in that they can be developed
to generate the same residuals. Merits and demerits
of one group carry to the other. These methods
provide design schemes in which the effects of
unknown disturbances can be minimized, isolability
conditions ascertained, and sensitivity analysis
performed in a consistent manner. The cost for
obtaining these advantages are mainly modeling
effort, computational effort, and the restrictions that
one places on the class of acceptable models. Pattern
classifiers are constructed solely based on process
history data. The main advantages of classifiers are:
their real-time performance, ease of knowledge
acquisition, and applicability to a wide variety of
systems. There are some limitations to methods
which are based solely on process history data. It is
the limitation of their generalization capability
outside of the training data. This problem is
alleviated by radial and ellipsoidal units by avoiding
a decision in case there are no similar training
patterns in that region. This allows the network to
detect unfamiliar situations arising from novel
faults. Besides its lack of ability to generalize to
unfamiliar regions of measurement space, classifiers
based solely on process history data also have
difficulties in identifying multiple faults.

The review of the fault diagnosis approaches
presented here does not adequately cover the
considerable body of work that is available in the
literature. This review is necessarily brief due to
spatial constraints. For a more thorough review the
reader is referred to Venkatasubramanian et. al.
[1994].

4.3, Data Reconciliation

Data reconciliation can be viewed as a quantitative
fault diagnosis problem with the focus on detecting
sensor faults and sensor biases. Another important
goal is to remove the measurement noise from
process data to enhance the control performance.
Data reconciliation usually consists of three parts: (i)
identification of the biased parameter, (ii) estimation
of the bias, and (iii) rectification of the sensor
measurements.

Romagnoli and Stephanopoulos (1981) proposed a
systematic method for identifying the source and
location of gross errors in linear systems under
steady-state conditions. There are three levels to their
proposed strategy. (i) A structured search of the
balance equations for measurements with gross
errors. (ii) Sequential search of the balance equations
that reduces the search further. (iii) Another level of
sequential search that identifies the gross error. Mah



and Tamhane (1982) proposed a statistical test on the
residuals to identify gross error.

Crowe, et. al. (1983) proposed a matrix projection
method for data reconciliation problems for the linear
case. Valko and Vajda (1987) introduced the idea of
decoupling the parameter estimation problem from
the state variable estimation problem. Though the
original problem is not naturally decomposable in
this manner, the rationale for doing this is that one
always has good initial values for the state variables,
whereas, it is hard to provide good initial values for
the parameters. Recently, Liebman et. al. (1992)
proposed a nonlinear programming methodology for
data reconciliation in nonlinear processes under
transient conditions.

Most practical processes are nonlinear in nature and
hence linear reconciliation methods might not be
adequate for practical problems. Also, steady-state
reconciliation methods might prove ineffective in
handling transients. In this context, the nonlinear
programming approach proposed by Liebman, et al.
(1992) is quite promising. The issues that have to be
addressed in this approach are, computational
complexity in the case of large-scale nonlinear
problems and nonconvexity problems.

4.4. Supervisory Control

Supervisory control, typically, has a variety of
functions. It includes model updating, controller
tuning, reacting to equipment failures, "gain
scheduling" to reflect changes in the disturbance
variables, changes in the process, and so on. It might
also include, for example, in batch plant automation,
dealing with sequential controls and exception
handling. It could also potentially include
automatically making major changes in controller
configurations or control algorithms to reflect process
changes, online optimization, automated startups and
shutdowns of continuous plants and scheduling.
These are knowledge intensive tasks and knowledge-
based methods have been proposed previously in the
literature.

Kraus and Myron [1984] presented a self-tuning
controller that uses pattern recognition techniques.
Automatic controllers are tuned manually in usual
practice. The control engineer perturbs the closed
loop, observes the pattern of response, and compares
this response to the desired pattern. Then, using his
experience, he adjusts the control parameters. The
pattern recognition based self-tuning PID algorithm
monitors the closed-loop recovery following a set
point or load disturbance and automatically calculates
the P, I and D so as to minimize the process recovery
time, subject to user-specifiable damping and
overshoot constraints. Cooper and Lalonde (1990)
have presented the idea of detecting naturally-
occurring input excitation events based on the recent
history of manipulated process input and also the
calculation of model gains to develop a continuous
gain schedule function for better control of nonlinear

systems. The utility of knowledge-based expert
systems in performing diagnostics and tuning control
systems in real-time has been discussed by Arzen
(1991). The formal integration of pattern recognition
techniques in control systems to design "Intelligent
Controllers” has been proposed by Stephanopoulos
(1991).

5. BRINGING IT ALL TOGETHER:
FUTURE DIRECTIONS IN INTEGRATED
PROCESS SUPERVISION

As we reviewed in the last section, there has been
considerable progress made in the last decade in
developing efficient solution strategies for the various
operational tasks. In this section, a perspective on
how these paradigms, tools, and techniques in process
operations might evolve and come together in the
near future is presented. To this effect, first, one
possible integration framework is discussed. The
intent here is to discuss the nature and the extent of
interaction that might occur between the various tasks
in such a framework. Then, some perspectives on
how the conceptualization and solution techniques for
these various tasks themselves might develop is
provided.

5.1. A Framework for Integrated Process
Supervision:

One can approach the formulation of an integration
framework from different viewpoints such as: (i)
information flow, (ii) flow and management of data
(iii) functional blocks view, and (iv) knowledge
management. From the perspective of operational
tasks, the most important facet of the integration
framework is the functional blocks view and one such
interpretation of the integration framework is provided
in Fig. 2. The figure shows the structure and the
interfacing of various process operational tasks and
the information-flow dependence between modules
that perform these tasks. The main functions of the
monitoring system are to provide concise executive
summaries to be presented to the operator, extract and
abstract hierarchical trend explanation to be passed on
to a diagnostic system and, detect and remove
outliers. The fault diagnostic system houses different
kinds of knowledge like rules, temporal patterns,
causal models and pattern information. The diagnostic
system assists the operator in identifying the root
cause of the problems and also passes on this
information to both supervisory control and data
reconciliation modules. The data reconciliation
module estimates the values of the parameters to be
sent to the supervisory control module and also
provides the regulatory control with the reconciled
process data. Supervisory control module would have
the complete information about the state of the
process. The supervisory system would utilize the
trend information and the diagnostic information to



suggest any changes needed at the regulatory control
level.
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Fig. 2. A framework for Integrated Process
Supervision

5.2. Process Monitoring

The important recent developments in the field of
process monitoring have been the advances made in
statistical process monitoring and syntactic pattern
recognition, as noted earlier. The ultimate use of
process monitoring is in diagnosis. The integration
of these monitoring techniques with diagnosis is
still not fully developed. One needs to see
improvements in this regard in the future. Also, the
recognition of operators as an important part of the
operational decision-making has put an onus on the
monitoring systems. The monitoring systems
should be able to provide information to the
operators in a way that they can understand them.
These systems should also be able to interact with
the operators, take suggestions from them and
interpret these suggestions for the other operational
tasks. Hence, one needs integration of Natural
Language Processors (NLP) into typical monitoring
systems in the future.

5.3. Fault Diagnosis

One of the important underlying points in all fault
diagnosis methods is the inadequacy of a single
method to handle all the requirements for a diagnostic
classifier. Though all the methods are restricted, in
the sense that they are only as good as the guality of
information provided, still some methods might be
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better suited for a particular problem at hand than
others. Hence, hybrid methods where different
methods work in conjunction to perform collective
problem-solving are an attractive alternative. For
example, fault explanation through a causal chain is
best done through the use of digraphs, whereas, fault
isolation might be very difficult using digraphs due to
the inherent ambiguities in qualitative models.
Analytical model based methods are superior in this
regard. Hence, hybrid methods might provide a
general powerful problem-solving approach. Consider
another example, where a pattern-based classifier and a
trend-based classifier are used sequentially for
improved search. The pattern based classifier localizes
the search based purely on the spatial organization of
various fault patterns. Once this is done, a trend based
classifier can take the set of fault hypotheses to see if
they can be further distinguished based on the
temporal pattern they exhibit. One can hope to
improve the resolution characteristics of an overall
diagnostic framework by combining various
approaches like these.

There has been some work on hybrid architectures.
The two-tier approach by Venkatasubramanian and
Rich (1988) using compiled and model based
knowledge is an example of a hybrid approach. Frank
(1990) advocates the use of knowledge-based methods
to complement the existing analytical and
algorithmical methods of fault detection. The
combination of methods allows one to evaluate
different kinds of knowledge in one single framework
for better decision making. The resulting overall fault
detection scheme would have a knowledge base
consisting of both heuristic knowledge and analytical
models, data base, inference engine and explanation
component. These methods provide promising
prospects for the solution of general diagnostic
problems.

When one has access to dynamic models of a process,
one should take advantage of such models in real-time
diagnosis. However, this is not usually done due to
the complexity of the models and the difficulties
involved in integrating diverse approaches in a single
framework. But using a framework such as the one in
Figure 2, a hybrid system would be feasible.

The basic idea here is to use a signed digraph for
doing fault diagnosis at a first level. The
completeness for a diagnostic system using digraphs
is usually quite good, whereas, the resolution might
be poor. The digraph will come up with a
malfunction hypotheses set which would also include
the actual fault(s). A prioritizer will then order the
faults for further validation. Under a single fault
assumption, the faults can be simulated using on-line
first principles model. The simulated data and actual
data can be compared using trend modeling approaches
for validation. Through a hybrid approach like this,



one can hope for improved completeness and
resolution in a diagnostic module.

5.4. Data Reconciliation

As mentioned before, most attempts in the past had
restricted themselves to linear and/or small systems.
With the recent progress in optimization and the
emphasis on plant-wide control, people are
attempting large-scale nonlinear optimization
problems. From a purely computational point of
view, if the only bottleneck is the "largeness" of
these problems, it may be handled by faster
computers,parallel computing and more efficient
algorithms. However, there are other issues like local
minima problems inherent in many nonlinear process
situations which makes the solution to large-scale
nonlinear optimization methods very difficult,
particularly in real-time. Hence, one needs to think of
new ways of formulating the problem and new
solution strategies drawing from different fields that
might mitigate this complexity. For example, instead
of using purely gradient-based approaches, one can
think of a combination of qualitative and quantitative
approach. Diagnostic qualitative knowledge can be
used to reduce the search space and provide good
initial guesses thereby enhancing the performance of
the data reconciliation module.

5.5. Supervisory control

While there has been a lot of work in regulatory
control over the years, much less attention has been
devoted to supervisory control issues (Garcia et. al.,
1991). As noted earlier, supervisory control includes
model updating, controller tuning, reacting to
equipment failures, changes in controller
configurations or control algorithms to reflect
process changes, online optimization, automated
startups and shutdowns and so on. The following
outlines some of the important issues to be addressed
in the context of controller performance.

The simplest kind of supervisory control action one
can think of is the monitoring of individual control
loops. In doing this a test signal is sent periodically
to perturb the closed loop system to a small degree,
By using pattern matching techniques on the
resultant output of the perturbed system, one can
identify out-of-tune controllers or controllers with
degraded performance. Once the problematic
controllers are identified, they can be tuned using
rules in a knowledge-based system or other
techniques.

Designi V. sj

Generally, there is no single perfect controller for all
kinds of input disturbances. A controiler designed for
a step input in a particular variable might not give
acceptable performance if there is a ramp input in
that variable. Furthermore a control system cannot
be designed to work well for disturbances in all the
input variables. These issues might become crucial
if the system is being operated under tight quality
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control requirements. This is another area where one
might see future developments in supervisory
control systems. A supervisory control system can
adaptively toggle between various control laws based
on the specification about the state of the plant. This
specification about the state of the plant can be
provided by a combination of sensor trends, fault
hypotheses from the diagnostic system and the
estimates from the data reconciliation module.

Update the model to redesign controlier:

Other than the input disturbances, there can be some
structural changes in the plant model] itself. In such a
situation the different kinds of controllers previously
designed might no longer be valid. This could call
for redesigning the controllers. This is another place
where one might use the information from the
diagnostic system to update the model. Once the
model is updated, one can decide about the
controllers that are affected by this change in the
model. With this new information from the model, a
redesign of the controllers can be performed.

The variable pairing for the controller depends to a
great extent on the state of the system. Once there is
a change in the state of the system, the original
pairing might no longer be optimal. There might
exist new pairings corresponding to the state of the
system that might provide optimal control action.
By using methods like Relative Gain Arrays (RGA)
and Singular Value Decomposition (SVD)
techniques in conjunction with knowledge-based
systems, a supervisory control module can advise the
operator of the different options available and
suggest an optimal configuration.

In case of process upsets one might want to continue
production in the system with minimal impact.
Having minimal impact on the system might call
for reconfiguration of the controllers in the system.
This can be done effectively if one has built-in
redundancy in the control system in the design stage
itself. To this end one might need to detune some
controllers and bring into operation other controllers.
Having bypass lines and rerouting streams might be
another way of moving variability in the process to
different locations. Detuning of controller might also
be done in the case of unanticipated instability in the
system.

U ified I . . fesi i
controllers;

Another kind of activity that the supervisory control
module can do is the online interactive design of
control parameters. In a typical plant, operating
strategies change form time to time. Such changes
might necessitate the redesign of control parameters.
In some situations, for example, one might want a
small settling time without worrying too much
about the overshoot in the response. In contrast, in
some other situation, one might want as small a



