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Preface

The material published in this volume comes essentially from a course given
at the Conference on “Boltzmann equation and fluidodynamic limits”, held in
Trieste in June 2006. The author is very grateful to Fabio Ancona and Stefano
Bianchini for their invitation, and their encouragements to write these lecture
notes.

The aim of this book is to present some mathematical results describing
the transition from kinetic theory, and more precisely from the Boltzmann
equation for perfect gases to hydrodynamics. Different fluid asymptotics will
be investigated, starting always from solutions of the Boltzmann equation
which are only assumed to satisfy the estimates coming from physics, namely
some bounds on mass, energy and entropy. In particular the present survey
does not consider convergence results requiring further regularity. However,
for the sake of completeness, we will give in the first chapter some rough
statements and bibliographical references for these smooth asymptotics of the
Boltzmann equation, as well as for the transition from Hamiltonian systems
to hydrodynamics.

Our starting point in the second chapter is some brief presentation of the
Boltzmann equation, including its fundamental properties such as the formal
conservations of mass, momentum and energy and the decay of entropy (for
further details we refer to the book of Cercignani, Illner and Pulvirenti [31]
or to the survey of Villani [106]). We then introduce the physical parameters
characterizing the qualitative behaviour of the gas, and we derive formally the
various hydrodynamic approximations obtained in the fast relaxation limit,
i.e. when the collision process is dominating. We finally introduce the main
existing mathematical frameworks dealing with the Cauchy problem for the
Boltzmann equation, which can be useful for the study of hydrodynamic lim-
its : we will particularly focus on the notion of renormalized solution defined
by DiPerna and Lions [44], which will be used in all the sequel.

The third chapter is devoted to some technical results which are crucial
tools for the mathematical derivation of hydrodynamic limits. Note that the
general strategy to rigorously justify the formal asymptotics is to proceed by
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analogy, that is to recognize the structure of the expected limiting hydrody-
namic model in the corresponding scaled Boltzmann equation. These tools will
therefore not be equally used in all fluid regimes. The first point to be discussed
is the implications of the entropy inequality, which provides some bound on
the (relative) entropy, as well as some control on the entropy dissipation, and
possibly some estimates on a boundary term known as the Darrozes-Guiraud
information, depending on the scaling to be considered. The second point is
to understand how these bounds, especially that on the entropy dissipation,
allow to control the relaxation mechanism, and which consequences this im-
plies on the distribution function. Note that, for fluctuations around a global
equilibrium, such a study goes back to Hilbert [65] and Grad [59]. The last
point to be investigated is the balance between this relaxation process due
to collisions, and the other important physical mechanism, namely the free
transport : in viscous regime the global structure of the scaled Boltzmann
equation is actually of hypoelliptic type, and one can exhibit some regulariz-
ing effect of the free transport (extending for instance the velocity averaging
lemma due to Golse, Lions, Perthame and Sentis [53]).

The incompressible Navier-Stokes limit, studied extensively in the fourth
chapter, is therefore the only hydrodynamic asymptotics of the Boltzmann
equation for which we are actually able to implement all the mathematical
tools presented in Chapter 3, and for which an optimal convergence result is
known. By “optimal”, we mean here that this convergence result

- holds globally in time;

- does not require any assumption on the initial velocity profile;

- does not assume any constraint on the initial thermodynamic fields;

- takes into account boundary conditions, and describes their limiting form.

We start by recalling some basic facts about the limiting system, in partic-
ular its weak stability established by Leray [70]. We then explain the general
strategy used to establish the convergence result of the renormalized solu-
tions to the suitably scaled Boltzmann equation (which is very similar to the
weak compactness argument of Leray), as well as the main difficulties to be
overcomed.

The moment method, introduced by Bardos, Golse and Levermore [5] re-
quires indeed to understand how one recovers the local conservation laws in
the limit, and to determine the asymptotic behaviour of the flux terms, espe-
cially of the convection terms which are quadratic functions of the moments.
In order to do so, the moments are actually proved to be regular with respect
to the space variables x by a refined version of the velocity averaging result
due to Golse and the author [56]. Furthermore the high frequency oscillating
parts of the moments, known as acoustic waves, are filtered out by a compen-
sated compactness argument due to Lions and Masmoudi [76]. One therefore
gets a global weak convergence result ([54] or [55]) which does not require a
precise study of the relaxation or oscillation phenomena.

In the case of a domain with boundaries, one has further to take into
account the interactions between the gas and the wall, which leads to a braking
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condition if the kinetic condition is a diffuse reflection, and a slipping condition
if the kinetic condition is a specular reflection.

The state of the art about the incompressible Euler limit, which is the
main matter of the fifh chapter, is not so complete as for the incompresi-
ble Navier-Stokes limit. Due to the lack of regularity estimates for inviscid
incompressible models, the convergence results describing the incompressible
Euler asymptotics of the Boltzmann equation require additional regularity
assumptions on the solution to the target equations.

Furthermore, the relative entropy method leading to these stability results
controls the convergence in a very strong sense, which imposes additional
conditions either on the solution to the asymptotic equations (“well-prepared
initial data”), or on the solutions to the scaled Boltzmann equation (namely
some additional non uniform a priori estimates giving in particular the local
conservation of momentum and energy).

Under these additional a priori estimates, it is indeed possible to improve
the relative entropy method, so as to take into account the acoustic waves and
the Knudsen layers.

The last chapter of this survey is devoted to the compressible Euler limit,
and is actually a series of remarks and open problems more than a com-
pendium of results. The main challenge is of course to understand how the
entropy dissipation concentrates on shocks and discontinuities, which should
be studied in one space dimension.

Paris, France Laure Saint-Raymond
November 2008
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1

Introduction

1.1 The Sixth Problem of Hilbert
1.1.1 The Mathematical Treatment of the Axioms of Physics

The sixth problem asked by Hilbert in the occasion of the International
Congress of Mathematicians held in Paris in 1900 is concerned with the math-
ematical treatment of the axioms of Physics, by analogy with the axioms of
Geometry. Precisely, it states as follows :

“Quant aux principes de la Mécanique, nous possédons déja au point de vue
physique des recherches d’une haute portée; je citerai, par exemple, les écrits
de MM. Mach [81], Hertz [64], Boltzmann [14] et Volkmann [107]. 1l serait
aussi trés désirable qu'un examen approfondi des principes de la Mécanique
fut alors tenté par les mathématiciens. Ainsi le Livre de M. Boltzmann sur les
Principes de la Mécanique nous incite a établir et a discuter au point de vue
mathématique d’une maniére compléte et rigoureuse les méthodes basées sur
lidée de passage a la limite, et qui de la conception atomique nous conduisent
aux lois du mouvement des continua. Inversement on pourrait, au moyen de
méthodes basées sur l’idée de passage a la limite, chercher a déduire les lois
du mouvement des corps rigides d’un systéme d’axiomes reposant sur la no-
tion d’états d’une matiére remplissant tout l’espace d'une maniére continue,
variant d’une maniére continue et que l'on devra définir paramétriquement.

Quoi qu’il en soit, c’est la question de l'équivalence des divers systémes
d’axiomes qui présentera toujours l’intérét le plus grand quant aux principes.”

The problem, suggested by Boltzmann’s work on the principles of mechan-
ics, is therefore to develop “mathematically the limiting processes |. . . | which
lead from the atomistic view to the laws of motion of continua”, namely to
obtain a unified description of gas dynamics, including all levels of description.
In other words, the challenging question is whether macroscopic concepts such
as the viscosity or the nonlinearity can be understood microscopically.

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, 1
Lecture Notes in Mathematics 1971, DOI: 10.1007/978-3-540-92847-8_1,
© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction
1.1.2 From Microscopic to Macroscopic Equations

Classical dynamics for systems constituted of identical particles are charac-
terized by a Hamiltonian

(z,v) Z[U,|2+ZV i — ;)
i#]

with V' a two-body potential.
The corresponding Liouville equation is

O fn(t,z,v) + Lfn(t,z,v) =0 (1.1)

where fn is the density with respect to the Lebesgue measure of the system
at time ¢, and the Liouville operator is given by

OH 0 oH 0
L= Z{aa—w—a—}

For a given configuration w(t) = (z(t),v(t)) the empirical density and
momentum (which rigorously speaking are measures) are then defined by

Mz

R.(X) =

N

Qu(X) = % Zv-d(X — ;)

Macroscopic equations such as the Euler equations or the Navier-Stokes equa-
tions (which have been historically derived through a continuum formulation
of conservation of mass, momentum and energy) are then expected to be
obtained as some asymptotics of the equations governing these observable
quantities.

1.2 Formal Study of the Transitions

The microscopic versions of density, velocity, and energy should actually as-
sume their macroscopic, deterministic values through the law of large num-
bers. Therefore, in order the equations describing the evolution of macroscopic
quantities to be exact, certain limits have to be taken, with suitably chosen
scalings of space, time, and other macroscopic parameters of the systems. So
the first step in the derivation of such equations is a choice of scaling.
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1.2.1 Scalings

Denote coordinates by (x,t) in the microscopic scale, and by (#,f) in the
macroscopic scale. Let p = N/L* be the typical density in the microscopic
unit, i.e. the number of particles per microscopic unit volume. Then, if = is
the ratio between the microscopic unit and the macroscopic unit, there are
typically three choices of scalings :

the Grad limit p = ¢, (@.,f) = (ex,et);
(The typical number of collisions per particle is finite.)
the Buler limit p =1, (&,t) = (cx,2t);

(The typical number of collisions per particle is ¢ 1.)
the diffusive limit p =1, (z.t) = (cx.£°t):

(The typical number of collisions per particle is 2.)

The Euler and diffusive limits will be referred to as hydrodynamic limits.

System of N interacting particles

Microscopic description

N>>1
Thermodynamic limit

Newton’s equations

N>>1
Teoilision << Tobservation
Large deviations

Teoliision << Tobservation
Fast relaxation limit

Fig. 1.1. Transitions between the different levels of description

1.2.2 Hydrodynamic Limits

To obtain hydrodynamic equations, we then differentiate the scaled empirical
density and momentum and more precisely their integral agasinst any test

function ¢ :
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1 X
JECLYARCTE R JECAGEN

N
[ @i @)z = 7 3 vilEle)elenii/e))

We get for instance

d 1< 1 o > dH

—fﬁgv,(t/s)go(en(f/s N;g p(ex;) azl NXZ: Oip(er;) =— 0,
1 i T;— T; T; —X; 1 N )

= g ; ch(s:z:i); . L. VV( - J) +7V—;'v, ®v;V(ex;) + O(e)

using Taylor’s formula for ¢, and symmetries to discard the main term.
In order to obtain the conservation of momentum in the Euler equations
we then need to show that the microscopic current

N
. S kit Ti —T;
~3N E Ve(ex;) E . VV< . )

i=1 i#j

converges to some macroscopic current P = P(R,Q, E) depending on the
macroscopic density, momentum and internal energy, in the limit € — 0. This
convergence has to be understood in the sense of law of large numbers with
respect to the density fy (solution to the Liouville equation)

%/fN(t’w) Z;Vv(swzz) ;%VVC ;‘TJ)— P(R,Q,E)||dw—0
(1.2)

The key observation, due to Morrey [86], is that (1.2) holds if we replace
fn by any Gibbs measure with Hamiltonian H, or more generally if “locally”
fn is a Gibbs measure of the Hamiltonian H.

The point is therefore to establish that “locally” fn(t) is a equilibrium
measure with finite specific entropy. The conclusion follows then from the er-
godicity of the infinite system of interacting particles : the translation invariant
stationary measures of the dynamics such that the entropy per microscopic
unit of volume is finite are Gibbs (exp(—£H)).

The Navier-Stokes equations are the next order corrections to the Euler
equations. In order to derive them one needs to show that the microscopic
current is well approximated up to order £ by the sum of the macroscopic
current P = P(R,Q, F) and a viscosity term evV(Q (in the sense of law of
large numbers).
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Since there is an £ appearing in the viscosity term, proving such an asymp-
totics requires to understand the next order correction to Boltzmann’s hy-
pothesis. This difficulty, recognized long time ago by Dobrushin, Lebowitz
and Spohn, has been overcome recently for simplified particle dynamics :
the mathematical interpretation is indeed given by the fluctuation-dissipation
equation which states

N

1 v T — I; Ti — T

2N ZVY(JI)Z 2 VV( € >
i=1 1#]

= P(Rw.sa Qw,ss EW‘E) + SVVQW,E + ELguJ-e + O(E)

(1.3)

for some function g, ., where L is the Liouville operator. In other words,
the expected asymptotics is correct only up to a quotient of the image of
the Liouville operator. The image of the Liouville operator is understood as a
fluctuation, negligible in the relevant scale after time average : for any bounded
function g

t
6/ dsfn(s,w)(eLg)(w)dw = €*(fn(t,w) — fn(s,w))g(w)dw = O(e?)
0
and is thus negligible to the first order in €.

In order to avoid the difficulties of the multiscale asymptotics, we may
turn to the incompressible Navier-Stokes equations which are invariant
under the incompressible scaling

(x,t,u,p) — Az, A%, A" u, A%p)

under which the fluctuation-dissipation equation becomes

1 o . Ty — Ty r; — Iy
2N ;W(”’); c 'VV( - ) (1.4)
= P(R.u,@ Qu.e» Ew,s) +vVQy, - + L. + 0(5)
where both the viscosity v and the functions g are unknown. Notice that
the solution to the fluctuation-dissipation equation requires inversion of the
Liouville operator.

In the following two sections, we intend to describe briefly the different
mathematical approaches which allow to obtain rigorous convergence results
for these asymptotics. These results will be stated in a rather unformal way in
order to avoid definitions and notations. We refer to the quoted publications
for precise statements and proofs.

1.3 The Probabilistic Approach

The most natural approach for the mathematical understanding of hydro-
dynamic limits consists in using probabilistic tools such as the law of large
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numbers and some large deviations principle. Nevertheless the complexity of
the problem is such that there is still no complete derivation of fluid models
starting from the full deterministic Hamiltonian dynamics.

1.3.1 The Euler Limit

Concerning the derivation of the Euler equations, what has been proved by
Olla, Varadhan and Yau [89] is the following result.

Theorem 1.3.1 Consider a general Hamiltonian system with superstable
pairwise potential, and the corresponding stochastic dynamics obtained by
adding a noise term which exchanges the momenta of nearby particles. Sup-
pose the Euler equation has a smooth solution in [0,T]. Then the empirical
density, velocity and energy converge to the solution of the Euler equations in
[0, T with probability one.

The strength of the noise term is of course chosen to be very small so that
it disappears in the scaling limit.

The proof consists of two main ingredients. The first point is to establish
the ergodicity of the system, and more precisely the following statement : if,
under a stationary measure, the distribution of velocities conditioned to the
positions is a convex combinations of gaussians, then the stationary measure
is a convex combination of Gibbs. Noise is therefore added to the system in
order to guarantee such information on the distributions. The second point is
to prove that there is no spatial or temporal meso-scale fluctuation to prevent
the convergence (1.2).

It is based on the relative entropy method, so-called because the funda-
mental quantity to be considered is the relative entropy defined by

H(flg) = [ fios(f/g)de
for any two probability densities f and g.

If fy is the solution to the Liouville equation (1.1) and v is any density,
we have the following identity

H(fn()le) = /fN(t Y (L — )iy dw .

From Jensen’s inequality, we then deduce that

OcH (fn (1)) < H(fn (1)) + log/ U (V7 (L = 9,)4y) dw .

Thus, if we have

1
N log/t/)t ('wt_l(L — 01)1/),) dw — 0 (1.5)
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the relative entropy can be controlled on the relevant time scale. The remain-
ing argument can be summarized as showing that a weak version of (1.5) holds
if and only if v, is a local Gibbs state with density, velocity and energy chosen
according to the Euler equations :

&R+ V- (RU) =0,
8,(RU) +V, - (RU®U + P) =0,
9 (RE) +V, - (REU —UP) = 0.

This is therefore a dynamical variational approach because the problem is
solved by guessing a good test function.

1.3.2 The Incompressible Navier-Stokes Equations

Equation (1.4) is very difficult to solve as it requires inversion of the Liouville
operator. It has been first studied by Landim and Yau [68] for the asymmetric
exclusion process.

The rigorous derivation of the incompressible Navier-Stokes equations from
particle systems has then been obtained in the framework of stochastic lat-
tice models which are more manageable. Esposito, Marra and Yau [46] have
established the convergence when the target equations have smooth solutions :

Theorem 1.3.2 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties.
Suppose the incompressible Navier-Stokes equations have a smooth solution
w in [0,t*]. Then the rescaled empirical velocity densities u. converge to that
solution u.

Quastel and Yau [91] have then been able to remove the regularity as-
sumption :

Theorem 1.3.3 Consider a 3D lattice system of particles evolving by random
walks and binary collisions, with “good” ergodic and symmetry properties. Let
u. be the distributions of the empirical velocity densities. Then u. are precom-
pact as a set of probability measures with respect to a suitable topology, and
any weak limit is entirely supported on weak solutions of the incompressible
Navier-Stokes equations satisfying the energy inequality.

The method used to prove this last result differs from the relative entropy
method, insofar as it considers more general solutions to the target equations,
but - as a counterpart - gives a weaker form of convergence. One main step
of the proof is to obtain the energy estimate for the incompressible Navier-
Stokes equations directly from the lattice gas dynamics by implementing a
renormalization group. A difficult point is to control the large fluctuation
using the entropy method and logarithmic Sobolev inequalities.

It is important to note that such a derivation fails if the dimension of the
physical space is less than three, meaning in particular that the 2D Navier-
Stokes equations should be relevant only for 3D flows having some translation
invariance.



