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Theoretical Criteria of Adhesion of
Coatings to Metals

A.A. Appen

The article examines five theoretical criteria of contact activity of
metals and adhesion of coatings to metals: thermodynamic, energy,
electrochemical, electron-structural, electrostatic. It is proved that
these criteria are not mutually contradictory and allow an examina-
tion of the phenomena taking place at metalcoating interphase
boundary in all its aspects.

Adhesion of coatings to metals is related to the contact activity of the metals.
Phenomena of interphase reaction at the boundaries between the metals and
the solid coatings and liquid metals of different types are interpreted at pre-
sent on the basis of at least five points of view. The theoretical criteria of
adhesion and contact activity of metals are given below:

[. Gibbs free energies 4G4 | of reactions taking place in two-dimension-
al monoatomic boundary layer (thermodynamic criterion);

IT. Mean energies of single bonds Me-O, Me'-Me”, and others, or in
first approximation mean energies required to convert the corresponding
compounds into atoms (Us.) (energy criterion);

III. Normal electrode potentials of metals ¢3,, at metal-melt boundary
(electrochemical criterion);

IV. Degree of incompleteness of electron orbits of atoms and statistical
weight of atoms having stable electron configurations (SWASC) (electron-
structural criterion);

V. Discharge potential and charge density on metal-dielectric boundaries
(electrostatic criterion).

Thermodynamic Criterion. During chemical reaction of a coating with
the substrate, chemical bonds appear and new chemical compounds are
formed. It is considered that the process of adhesion is related to the free
energies of formation of the corresponding compounds. The more negative
the free energy of formation of compounds 4GS in monolayer, the greater

form
is the work of adhesion. For example, on a metal-oxide boundary new Me-O
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bonds are formed. Therefore, adhesion of molten oxide (silicate) to metals
must increase in proportion to the increase in free energies of formation of
corresponding oxides, i.e. affinity of metals to oxygen.

The affinity of metals to oxygen is generally found by assuming the com-
bination of one mole of O, to metal. In this case, general reaction of forma-
tion of oxides for all electro-positive elements of any valency has the form

4/nMe + Oy = 4/mnMeOmn)2, (1)

where m—number of atoms of Me in a molecule of oxide; n—valency of the
element,

Yttrium, thorium, graphite, uranium, scandium, alkaline earth and rare
earth elements, titanium, zirconium, aluminum, and lithium are distinguish-
ed by their high affinity to oxygen. During casting of ferrous or nonferrous
high melting metals, they act as deoxidizing agents (reducing agents), and
in air, in a finely divided state, they possess pyrophoric properties.

Vanadium, tantalum, niobium, molybdenum, tungsten, chromium, man-
ganese, zinc, sodium, and iron possess somewhat less, but nevertheless high,
affinity to oxygen. Copper, nickel, cobalt, lead, tin, cadmium, bismuth, and
antimony have less affinity to oxygen.

Precious metals are distinguished by their Jeast affinity to oxygen. For
their oxides, 4G$.> 0, i.e. at high temperatures, they decompose.

Eremenko [1] and Naidich [2] made an attempt to develop quantitative
theory of adhesion and to find out a theoretical measure of adhesion, parti-
cularly, on the molten metal-solid oxide boundary. According to them an
exchange reaction

Me’O + Me” = Me’O + Me’, )

takes place on the surface of molten metal Me” at the contact with solid
oxide Me'O, and a decrease in the specific surface free energy 463 of the
system as a result of this reaction serves a measure of the adhesion.
Consequently, Wi =— 4GS .. They made an approximate calculation of
value 4G _ for the case when the reaction is limited to monoatomic surface
layer. At temperature T, the value 4G9 , of reaction is equal to

4GS | = AG3Me’O— AGSMe'O. ?3)

Similar calculations were carried out by Zhuravlev [3].

In calculations the number of moles (gram-atoms) of reacting substances
contained in unit surface were taken into account. Finally, it was concluded
that the work of adhesion W;., determined according to Young’s equation
from wetting data, is near to 4G5, , of the corresponding reactions.

In accordance with equatxon (3) experience shows that with silicate
glasses and oxides, the oxidizable metals adhere well but precious metals
adhere poorly [4]. Metallic films Be, Al, Cr, Mg, Zr, Ti, W, Mo have good
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adhesion and are not peeled from a glass substrate; adhesion of films Ni,
Cu, Sn, Cd, In is weaker; films of Pt, Au, Ag, Rh are easily removed. To
increase the adhesion strength of the latter, heat is necessary.

Energy Criterion. Adhesion is caused by the force ofattraction of atoms
located in different phases. Consequently, the work involved in the separa-
tion of atoms or, in other words, the work (energy) involved in the break-
ing up of interatomic bonds per unit interfacial area serves as a direct meas-
ure of adhesion.

The work expended in breaking the atoms of a single phase body is the
work of cohesion. The work for breaking the chemical bond is often called
the energy of interatomic chemical interaction or, simply, binding energy.
It is determined by the work required to convert the substance into an
atomic state. The work of cohesion W; of a simple substance can be consid-
ered as the product of the number of atoms located in the cleavage plane
(Nop/M)?3 and the average energy required to break half of the bonds per-
taining to one atom Uy/2Ny, i.e.

UanP2’3 ,
2 N(;/s M?2/3

where Uai—energy required to convert 1 g-atom of the substance into atomic
state; No—Avogadro number; p—density; M—atomic weight.

Taking, for example, for aluminum U, = 77.3 and for titanium U, =
112 kCal/g-atom*, we get

We a1 = 3250 and Wi = 4530 ergs/cm?2.

These values are one-and-one-half times greater than the work of cohesion
of metals, i.e. twice the values of the surface tension of aluminum and
titanium at melting points. Taking into account the differences in tempera-
ture and the state of aggregation, such a difference is quite natural.

For a theoretical evaluation of adhesion, such an approach is conceiva-
ble in principle, but is actually complex [3].

On the boundary of molten oxide or silicate melt with solid metal, che-
mical bonds of type Me,~O-Me, must appear as a result of initial stage of
chemical reaction. Adhesion of oxide coatings to metal must directly de-
pend on the energy Ui required to break the chemical bonds Me-O or
Me —O. This basic reasoning does not change when the oxygen atom com-
bines with two or many atoms of the metal. Namely, U; characterizes the
strength of the chemical bonds.

A theoretical measure of the adhesion of metal to the oxide of the same
metal and vice-versa, in simplest interpretation, is approximately expressed
as the product of average energy U; of single bond Me,—O and the number
of bonds Y per unit interphase area:

Wc =

*Values Uat are taken as equal to heats of sublimation at T = 0.



W =UY.

Number of bonds appearing at time ¢, is caused by the kinetics of the pro-
cess of reaction of the coating with the given substrate and is obviously a
complex and still unknown function of many parameters. Unlike the simp-
lest method of calculation of cohesion, it is not possible to determine the
number of bonds ¥ appearing under the given conditions and at a given
time on the boundary of two different phases.

Without solving the problem quantitatively, we can make certain quali-
tative statements. The work of adhesion of oxide coatings to metals, in first
approximation, must be proportional to the energy required to convert the
oxides formed at the interphase into an atomic state, i.e. W, = U, Average
values of U, of solid oxides can be calculated according to equation

Ua =——]/mAH[°M=mo”] - L‘[)Mel + n/2mDo,).

Here Do, —dissociation energy of oxygen molecule; L"Me]—heat of subli-
mation of metal; AH["Memon]——enthalpy of formation of oxide [6].

Electrochemical Criterion. At the interphase boundary, electrical double
layers are always formed in which the different charges are distributed un-
evenly. This results in the appearance of a potential difference. A potential
difference between two metals is equal to the difference in the work func-
tions of electrons of the two metals. The surface of that metal is charged
positive in which the work function issmaller. Alkali metals are distinguish-
ed by their small values of work function and the precious metals by their
high work function. The work function also characterizes the metal-semi-
conductor interphase boundary. Potential difference at metal-silicate melt
interphase depends on the ion work function of the metal in the liquid-
metal, i.e. on the chemical nature, physical state, and temperature of metal
and the melt.

On the whole, the properties of the interphase must be examined as a
result of interaction of two factors—electron and ion.

A large number of investigations are devoted to the study of electrical
double layers at the boundaries liquid metal—solid oxide, liquid metal—
liquid oxide, silicate melt—solid metal. The parameters of the electrical
double layer that can be measured experimentally are: potential difference
¢ at the boundaries of the phases; electrical charge of unit surface (electri-
cal charge density g), capacitance of double layer C. Potential difference
generally varies in the range 0-2 V, charge density—in the range 0-20076
coulomb/cm?, capacitance—in the range 0-600 xF/cm?2.

Depending upon the nature of the substance in contact with the metal,
the metallic surface may have either positive or negative charge. In oxide
melts, the surfaces of metals and alloys are generally charged positively. This
is accompanied by oxidation of the surface and transfer of metal ions into



