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"PREFACE

TaIS book is written for graduate students and for under-
graduates whose degree courses include more matrix theory
than a text-book of elementary properties will provide. Init I
have tried to give an account of the theory of finite matrices,
including their invariant factors and elementary divisors, which
can be read with reasonable ease by mathematicians who are
not specialists in this particular field. I have worked with the
ordinary numbers of analysis and have not considered, save
for an odd reference or two, the demands of an abstract algebra.
My aim throughout has been to make the argument simple
and straightforward.

When I began the book I expected that the whole of it would

be concerned with the presentation of results long since known
in some form or other. On reaching the chapter on functions
of matrices I found that, starting from a few ‘well-known’
facts, the theory unfolded itself naturally and easily, but that
only patches of it here and there appeared to have been pub-
lished before. Accordingly, Chapter V is largely a first essay at
a connected account of this part of the theory.
' My indebtedness to other books and to research papers is
very great. The reader who wishes to acquire a knowledge of
the wider field within which my own hm1ted treatment hes
should consult, among others:

H. W, Tumbull and A. C. Aitken, An Introduction to the
Theory of Canonical Maitrices (Blackie, 1932);

W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry
(Cambridge, 1947);

G. Julia, Introduction mathématique aux the’omes quantiques
(Gauthier-Villars, 1949), Part I on Finite Matrices a,nd Part 11
on Hilbert Space and Infinite Matrices;

A. A. Albert, Modern Higher Algebra (Chicago, 1937);

J.H. M. Wedderburn, Lectures on Matrices (Amer. Math. Soc.
Colloquium Publications, vol. xvii, 1934);

C. C. MacDuffee, The Theory of Matrices (Chelsea Publishing
Co., New York, 1946: reprint of first edition).
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For anything concerning matrices that was known prior to
1932 MacDuffee’s book is invaluable. A similar account. of
what has been done since 1932 would be a great asset; is it too
much to hope that a scholar might one day write it or edit a
series of B.Sc. and Ph.D. theses written to that end? The
‘present book makes no pretence to be complete, even in the
central topics of finite matrices: it attempts a clear and readable
account of the principal theorems and no more.

I end with an acknowledgement of my debt to the staff of the

. Clarendon Press. I have no immediate plans for another book

with which to tax their skill and forbearance and so, on this
occasion, I wish particularly to thank all of them for the way in
which, over a period of some fifteen years, a series of not too
tidy manuscripts has been transformed into well-printed books.

HERTFORD COLLEGE, OXFORD W.L.F.
April 1951
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CHAPTER I
INTRODUCTION

- 1. Scope of the chapter

THE aim of this introductory chapter is to provide a résumé
of the more elementary properties of matrices. I have thought
it useful, for both writer and reader,.to note explicitly, even
though it be briefly and sketchily, the accepted facts about
matrices on which the later chapters will be based. Some proofs,
but not all, will be given. I have tried to hold the balance
between brevity and clarity and, accordingly, I have omitted
many details that would find a place in a full account of what
is given here in outline.

2. Notation
(a) A set of mn numbers arranged in m columns and n rows
is called a matrix.t Thus

5 Qg e Ay
g1 Gag oo Ogp
Apy Qg oo Lm

is a matrix. The square bracket is a conventional symbol which
is read as ‘the matrix’. The individual numbers are referred
to as the ELEMENTS OF THE MATRIX. )
We shall normally use the square bracket whenever we wish
to indicate that an array of numbers is to be considered as a

matrix: thus [21, Taseers Tn]

indicates that the n letters &, &,,..., 2, are to be considered as
a ONE-ROW MATRIX. To indicate that = letters z,, ..., %,
are to be considered as a ONE-COLUMN MATRIX we use the special

notation A —_—

When a matrix has » rows and % columns we refer to it as a
SQUARE MATRIX OF ORDER 7.

t Some writers insist that the laws of addition and multiplication must be
laid down before the use of the word matrix can be justified.
5378
B



2 \ INTRODUCTION

- (b) Capital italic letters 4, B,..., X will be used to denote
‘mastrices, in general square ma,trlces of order n. To indicate
the actual elements of a matrix we shall write down the element
in the sth row and kth column; thus

[azk] [gk'i]

means that A has the element a,, in the ith row and kth column,
while B has the element £,; in the ith row and kth column.

The DETERMINANT whose elements are precisely those of a
square matrix A4 is denoted by |4|. When |4| = 0 the matrix
is said to be SINGULAR and when |4| # 0 the matrix is said to
be NON-SINGULAR. ’ .

We sometimes use a special notation for matrices ha.vmg 8
single row or a single column. Clarendon letters a, b,..
denote single-column matrices and (anticipating the later deﬁm-
tion of & transpose) a’, b’,..., X’ denote single-row matrices; thus

X = {Byuaieh X' = (@ y]
means that X is the single-column matrix and x’ the single-
row matrix having the elements shown.
(¢) It being understood that, unless the contrary is stated,
all literal suffixes run from 1 to », we shall use the SUMMATION
CONVENTION for repeated literal suffixes. With this convention

n
a,.%, denotes Za,,sxa

a.nd a,,%,, denotes 2 za,,sx,a
v “

On the pther hand, a repeated numerical suffix, such as the
suffix 1 in @,y 2, will not imply a summation.

. When the occasion arises we shall enclose a literal suffix in
brackets to denote that there is to be no summation with
respect to that pa.rtlcula.r suffix; thus

a,, denotes Zaux,,,

there being né summation w1th respect to s.

(d) The square matrix of order # having unity in each place
on its leading diagonal and zero elsewhere is called the UNIT -
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MATRIX of order n; it is denoted by I. Sometimes we use I,
L,... to denote unit matrix of order 7, s,.
A matrix having zero in every place is ca.lled a NULL MATRIX

and is denoted by 0.
A square matrix of order » whose only non-zero elements
occur in its leading diagonal is called a DIAGONAL MATRIX.

3. Addition and multiplication

T R (@] +[bax] = [@in+bar]- (1)
The definition applies to any two matrices 4 and B, not neces-
~ garily square, provided that each has the same number of rows
~ and each has the same number of columns. Moreover, from

~ the deﬁnition, ‘ A+B=B + A.
(b) Multiplication.
[@4r] % [bax] = [ai)\ b,\k] @)
The definition applies to any two matrices 4 and B, not
necessarily square, provided that the number of columns in
- A is equal to the number of rows in B. The product 4B has
as many rows as A and as many columns as B.

From the definition,
‘ A(B+C)= AB+AC
and . ‘ (B+0)A = BA+CA.
Further, (@] X [bar] X [c4],

whether the triple product be formed by -
_ (AB)C or A(BO),
is equal to : [@:2 02 Cure] (3)
and is commonly denoted by ABC. Products of four or more
matrices are formed on the same pattern: thus
: ABC..Z = [a,)‘bmcp,,‘... zpk],
the ¢, k being the only suffixes that do not imply summation.
By their definitions, 4 B and BA are matrices whose elements
are formed by different processes and, in general, 4B is not
'equa.l to BA. On the other hand - -
Al =14A=A4

- for every square matrix-A of order n.
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Finally, the equation AB = 0 may be true when neither 4
. nor B is a null matrix; but if either' A or B is known to be
non-singular when 4 B = 0, then the other is necessarily a null
matrix.
4. Related matrices

(@) The reciprocal of a matriz.

When A = [a;,], the determinant obtained from |4| by
deleting the 'rth row and sth column and multiplying by the

sign-factor (—1)"+ is denoted by A4,,; it is called the cofactor
of a,, in |A|. Th'e matrixt (4]

is called the ADJUGATE or ADJOINT of 4.
It is & well- known result in the theory of determma.nts that

] Akj =0 ("’ 7 k) (4)
and 0y A, = 14| (= 1,2,.,n). (5)
Hence, when A4 is a non-singular matrix,

(i)} [Awf |A]] = [a5 Ap;l |1A]} = T
and similarly, on working with columns instead of rows at lines
4) and (5),
L [yl 1411 [ag] = I.
Accordmgly, we call the matrix
[4wi/ 141]

the RECIPROCAL of 4 and denote it by A-1.

When A4 is a singular matrix, |4| = 0 and the division by |4] is
no longer valid: the reciprocal is not then definable.

Moreover A-! is the only matrix with the property that its
product by A is equal to I. For, if RA = I, then

(R—A-Y)4A = RA—1 = 0;
on multiplying by 4-1, we get
(R—A-HYAA1 =0,
, R—A4-1=0.

Thus & matrix R for which R4 = I must be equal to 4-1.
Similarly, AR = I implies R = A1, ’

or, since A4-1 =

t. Notice that Ay comes in the ith row and kth column.
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*(b) The powers of a matrix. .

The notations 42, 43,..., stand for AA, AA2,...; A2, A-3,...

stand for A-14-1, A-1A-2,...; and with this nota.tlon

' A4rx 4t = A°><A' = ArH
for all integer values of r and s (positive, negative, or zero)
provided that A° is interpreted to be I.

(¢) The transpose of a matriz.

The matrix whose rth column (r = 1,2,...) is the rth row of
A is called the TRANSPOSE of 4 and is commonly denoted by
A’'. Thus . .

- = [ag] gives A’ =[a]. _

When 4 = A’, that is when a;;, = a;;, the matrix 4 is said
to be SYMMETRICAL.

(@) Functions of a matrix.

When ay, a,,..., @, are numbers and

f@) = apt-a,24...4-a, 27
is a polynomial in a single variable z, the matrix-sumt
agl+a, A+...+a, AP
is a single matrix that is conveniently denoted by f(4). If this
matrix is non- smgular it has a reciprocal and thls is con-
veniently denoted by 1/f(4).
The product of this by g(A), where g(x) is another polynomlal

in #, yields a matrix that is conveniently denoted by g(4)/f(4).
. The resulting matrix is ‘sa,id to be a rational function of 4.

5. The law of reversal for transposes and réciprocals

Let o A=[ag], B=[bu]
Then AB = [ayby],  (AB) = [ayby]-
But B'A" = [by] X [az4]

= [bjay)

= [y b3] = (4BY.

t The matrix a; 4, where g, is an ordinary number, is defined to be the
matrix whose elements are @, times the elements of 4 ; e.g.

Z[Q s =[s ol
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Hence, the transpose of a product is the product of the transposes
taken in the reverse order.

By extension, ~ (4BC) =C'B'A’
and (4B...K)'=K'...B'A’.
Again '

(B-1A-)X(4B) = B'A-'AB = B-{IB= BB =1
and, similarly, (AB)x (B-14-1) = I.
Accordingly, the reciprocal of a product ‘z"s the product of the
reciprocals taken in the reverse order.
' »By extension, (ABC)-* = (-1B-14-1
and (A4B..K)l= K. B4
6. Simple matrix equations

(a) When A, B are given square matrices of order » and B
is non-singular, the matrix equations

A = BX, A=YB
in the ‘unknowns’ X and Y have the unique solutions
. X = B4, Y = AB-1,
That these are solutions follows at once from the fact that
BBl= B-1R=— I,

Moreover, each solution is unique: if, for exa.mplé, BR is also
equal to 4, then B(R—X) = 0 and, since B is non-singular,
R—X = 0.

(b) The unique solution of the matrix equation
o ‘ Ax =b,
where 4 is a non-singular square ‘matrix of order  and X,

b are single-column matrices of # rows, is x = 4-'b. It pro-
vides the solution of the » linear equations

aikxk = b‘l: (7: - 1, 2,-.., n)-
Similarly, the matrix equation
: y/A . bl
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has the solution y’ = b’A-! and provides the solution of the n
aquations et =0b; (1 =12,.,n).

- 7. Submatrices

L ‘ Pin P12 Pus
A matrix P=|ps P P

31 Ps2 Pss
can be denoted, on introducing symbols P, P,, B, F,, where

P1 - [?;11 1’1:]’ P = [Pls],
21 P2 : Das

By =[ps Dsl P, = [pgs)s

B B
by | [ P, B
The matrices P,, P, B, P, are called submatrices of P.

When a second matrix ¢ is divided into submatrices on the
same pattern as P, a little calculation shows that

' P+Q, B+Q
Pio= |aaTW faTh
+o=[a1e oo

- PQ+PRQ P G+BQ
d P= 17v1 2 Y3 192 24.
an e=[aoing &%+a&]

In this sum and product the ‘elements’ are themselves matrices;
for example, P,+ @, is a matrix of two rows and two columns,
while P, @,+P, Q; is a matrix of one row and two columns.

The symmetry of the previous example is not an essential
feature of the process. In multiplication, for example, what is
essential is that, in each P, @, that occurs, F, shall have as many

- columns as @, has rows. As an illustration of a non-sym-
metrical arrangement (it has no other interest and is devised
purely as an illustration), let ;

Py =[Py Pl Py = [pss)s

— |1 % 913] ='[914]
na [Qzl Q2 9osl’ s 1924 ’

Q= _[931 Q32 fka]y Qe = [aa]-
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: 911 - 912 913 2.414
[Pn D1z | P13] X ?g{__?_lgg__?_lga__:_ng

%1 dss 933 | Tas
[1:11 Bolx [gn le] '

21 22
['Pll Q11+P12 Q21 'Rl.l Q12+P12 Q22]

= [P PueTie Puclis Piidrals
the summation with rega,rd to k being for £ =1, 2, 3.

‘8. The rank of a matrix

(@) Minors.

Let A be a matrix, not necessarily square. From it delete
all rows save a certain r rows and all columns save a certain r
columns. When » > 1 the elements that remain form a square
matrix of order » and the determinant of this matrix is called
a minor of 4 of order . A single element of 4 may be con-
gidered to be a minor of order 1.

(b) Definition of rank.

A matriz has rank r (= 1) when r is the largest integer for which
we can state that ‘not ALL minors of order r are zero’.

To understand the definition we note that a minor of order
k41 can be expanded by its first row as a sum of multiples of
minors of order k, so that if all minors of order k are zero, then
all minors of order k41 are zero. The converse is not true;
for example, in

1 2 47
05 1 6
1 02 3
2 1 36

the only minor of order 4 is the determinant of the matrix and
its value is zero, but the minor of order 3

1
0
1

S Ov b
N = B

is not equal to zero.
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It is sometimes convenient to speak of a null matrix, in which
every element is zero, as being of rank zero. -

-(¢) Linear dependence.
Consider an array of three rows

ay, by, ., 2,
@y by .y 2y
a3, bgy .., 2.

: If the three rows are related in such a way that there are
numbers A; and A, for which

Ps = Mpitdapy (p = a,b,...,2) (6)
we say that the third row is the sum oF MULTIPLES (), and A,)
of the first and second rows. When the three rows, or two of
~ them, are related in such a way that there are numbers A, A,,
A3, of which two at least are not zero, and for which

A1P1+’\2P2+A3P3 =0 ‘ (p = a,b,...,2), ‘ (7)
we say that the three rows are LINEARLY DEPENDENT. We say
that the rows are LINEARLY INDEPENDENT if (7)i is satisfied only
when A; = A, = A; = 0.

- The definitions extend to any number of rows or of columns.
(d) Rank and linear dependence.

The rank of a matrix is equal to the number of linearly
independent rows in the matrix, as the following theorem shows.

Let A be a matriz of rank r-and let a non-zero minor of 4 of
. order r have elements from the oth, Bth,..., kth rows of A (r rows
in all). Let A have a further row, say the Oth. Thent there are
numbers )\a, Agseees A, for which

Po = Aocpoz"l_AﬂPﬂ"}'"."'i_)‘lcpm )
so that the 0th row is the sum of multiples of the ath, Bth,..., kth
rows.

Thus we can, when the number of rows of 4 exceeds its rank
r, select r rows of A and express every other row as a sum of '
multiples of the r selected rows. Moreover, it is not possible to

T This and other properties noted in this section are proved in Ferrar,

Algebra (Oxford, 1941), at chapter viii. Further references to this book will
be indicated by F. and the appropriate page number.’
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select g rows of A, where ¢ < r, and then express every other row
as a sum of multiples of the g selected rows.
There are similar results for columns.

. 9. Linear eqhations
Consider the m linear equations

za’ikxk =b; (i=1,..,m) - (8)
in the » unknowns z,,..., z,. Let the matrices 4, B be given by
O - - Gy @n - . G, b
Ad=F - =« « - B=1| . . . .. :
Omy - © Omn Op1 Oy bm

let A be of rank r and B of rank 7. Then, from the nature of
definition of rank, » < r’; moreover

- When r =1’ the equations (8) are consistent (that s, there is at
least one set of values of the unknowns that satisfies all the equa-
tions) and when r < r' the equations (8) are not consistent.

When all the b, in (8) are zero, we are concerned with what
- are known as HOMOGENEOUS LINEAR EQUATIONS, namely

n
kglaikxk =0 (¢=1,.,m). (9)

The ranks r and 7’ of the above discussion are now necessarily
equal and the equations are always consistent. On the other
hand, the equations are always satisfied by
== ..=2,=0

and this may be the only solution. The following theoremt
summarizes the more important results about such a set of
equations.

Let A4, in (9), be of rank . Then r < n, since 4 has =
columns.

(i) When r = n, the equations (9) have no solution other than
X =%y =..=2,=0.

1 For proofs and further details, see F. 98-105.
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(i) When r = n—1, the equations have effectively only ome
non-zero solutiont and if this is

§1: Ez’ ] En,
all other non-zero solutions are of the form
ALy, Ay pevy AL,
(iii) When r < n—1, the equations (9) Iuwe n—r linearly inde-

pendent non-zero solutions and every monm-zero solution can be
expressed as a sum of multiples of these e~ solutions.

10. The rank of a product of two matrices

. We note two important theorems of frequent apphcatlon

* (@) The rank of a product AB cannot exceed the rank of either
factor

- (b) When B is a non-singular square matriz of the same order

as the square matriz A, the matrices
v A, AB, BA
all have the same rank.

The proof'of these theorems follows fairly directly from the
following result, { one that is often used apart from its immediate
connexmn with the ranks of matrices.

(c) Let 4 have n, rows and » columns and let B have n rows
and n, columns; then A B has n, rows and n, columns. Every
minor of AB of order greater than n, if there are such minors, is
equal to zero; and every minor of AB of order t < n is either the
product of a t-rowed minor of A by a t-rowed minor of B or is
the sum of a number of such products.

This contains as a special case the more elementary result

When A and B are square matrices of the same order, the
determinant |[AB| = |A| X |B|. The proof of this follows at once
from (2) of § 3. Its extension to a product of three or more

matrices, | 4 Bo.. K| = |A|.|B|.|C]. ... . K],

is also a direct consequence of the definition of a product of

matrices.

1 *Non-zero’ because at least one ¢ is different from zero.
1 F. 109.



