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Editor’s Preface

Approach your problems from It isn’t that they can’t see the

the right end and begin with the solution. It is that they can’t see
answers. Then, one day, perhaps the problem.

you will find the final question.

‘The Hermit Clad in Crane Feathers’ G. K. Chesterton, The scandal of
in R. Van Gulik’s The Chinese Maze Father Brown ““The point of a pin”
Murders.

Growing specialization and diversification have brought a host of
monographs and textbooks on increasingly specialized topics. However,
the ‘tree’ of knowledge of mathematics and related fields does not grow
only by putting forth new branches. It also happens, quite often in fact,
that branches which were thought to be completely disparate are suddenly
seen to be related.

Further, the kind and level of sophistication of mathematics applied in
various sciences has changed drastically in recent years: measure theory
is used (non-trivially) in regional and theoretical economics: algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory
and the structure of water meet one another in packing and covering
theory; quantum fields, crystal defects and mathematical programming
profit from homotopy theory; Lie algebras are relevant to filtering; and
prediction and electrical engineering can use Stein spaces.

This series of books. Mathematics and Its Applications, is devoted to such
(new) interrelations as exempla gratia:

—a central concept which plays an important role in several different
mathematical and/or scientific specialized areas:

—new applications of the results and ideas from one area of scientific
endeavor into another;

—influences which the results, problems and concepts of one field of
enquiry have and have had on the development of another.



vi Editor’s Preface

With books.on topics such as these, of moderate length and price, which
are stimulating rather than definitive, intriguing rather than encyclo-
paedic, we hope to contribute something towards better communication
among the practitioners in diversified fields.

The unreasonable effectiveness of ~ As long as algebra and geometry
mathematics in science. . . proceeded a long separate paths,
Eugene Wigner their advance was slow and their
applications limited.
Well, if you knows of a better ‘ole, But when these sciences joined
go to it. company, they drew from each
Bruce Bairnsfather other fresh vitality and thence-
forward marched on at a rapid pace
What is now proved was once only towards perfection.
imagined.
William Blake Joseph Louis Lagrange

Krimpen a/d 1Jssel MICHIEL HAZEWINKEL
March, 1979.



Preface

Two principal approaches to the problems of applied mathematics are
through numerical analysis and perturbation theory. In this monograph,
we discuss and bring together a special body of techniques from each of
these: (i) from numerical analysis, methods for stiff systems of differential
equations, (ii) from perturbation theory, singular perturbation methods.
Both of these areas are grounded in problems arising in applications from
outside of mathematics for the most part. We cite and discuss many of
them.

The mathematical problem treated is the initial value problem for a
system of ordinary differential equations. However, results for other
problems such as recurrences, boundary value problems and the initial
value problem for partial differential equations are also included.

Although great advances have by now been made in numerical methods,
there are many problems which seriously tax or defy them. Such problems
need not be massive or ramified. Some are the simplest problems to state.
They are those problems which possess solutions which are particularly
sensitive to data changes or correspondingly problems for which small
changes in the independent variable lead to large changes in the solution.
These problems are variously called ill conditioned, unstable, nearly
singular, etc. Stiff differential equations is a term given to describe such
behavior for initial value problems.

Problems of this type have always attracted attention among mathe-
maticians. The stiff differential equation is a relative late comer, its
tardiness correlated perhaps to the development of powerful computers.
However, in recent years a sizeable collection of results has emerged for
this problem, although of course very much remains to be done. For
example, the connection between stiff problems and other types of ill
conditioned problems is easy to draw. However, there is a conspicious
paucity of methods of regularization, so commonly used for ill conditioned
problems in the treatment of stiff equations.

Xi



Xii Preface

Problems of singular perturbation type are also ill conditioned in the
sense described here. These problems have been extensively and conti-
nuously studied for some time. Only relatively recently and also with the
development of powerful computers has the numerical analysis of such
problems begun in a significant way.

Of course the two problem classes overlap as do the sets of numerical
methods for each. We include examples and applications as well as the
results of illustrative computational experiments performed with the
methods discussed here. We also see that these methods form the starting
point for additional numerical study of other kinds of stiff and/or singu-
larly perturbed problems. For this reason, numerical analyses of recur-
rences, of boundary value problems and of partial differential equations
are also included.

Most of the material presented here is drawn from the recent literature.
We refer to the survey of Bjurel, Dahlquist, Lindberg and Linde, 1972,
to lecture notes of Liniger, 1974 and of Miranker, 1975, to three symposia
proceedings, one edited by Willoughby, 1974, one by Hemker and Miller,
1979, and one by Axelsson, Frank and vander Sluis, 1980. These and
citations made in the text itself to original sources are collected in the
list of references. I cite particularly the work of F. C. Hoppensteadt
to whom is due (jointly with myself) all of the multitime methodology
which is presented here.

This monograph is an outgrowth of an earlier one which contained
my lecture notes for courses given at the Université de Paris-Sud, (Orsay)
and at the Instituto per le Applicazioni del Calcolo ‘Mauro Picone’,
Rome during 1974-1975.

The presentation in this monograph reflects the current active state of
the subject matter. It varies from formal to informal with many states in
between. I believe that this shifting of form is not distracting, but on the
contrary, it serves to stimulate understanding by exposing the applied
nature of the subject on the one hand and the interesting mathematics
on the other. It certainly shows the development of mathematics as a
subject drawing on real problems and supplying them in turn with
structure, a process of mutual enrichment. This so-called process of
applied mathematics is one which I learned so many years ago as a
student, first of E. Isaacson and then of J. B. Keller, and I do, with gratitude,
dedicate this modest text to them.

I'am grateful to R. A. Toupin, the Director of the Mathematical Sciences
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Department of the IBM Research Center for his interest in and for his
support of this work. For the physical preparation of the text, I must
thank Jo Genzano, without whose help I would not have dared to attempt
it.

Yorktown Heights, 1979 W. L. M.
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Chapter 1

Introduction

Summary

In the first section of this chapter, we introduce the problem classes to
be studied in this monograph. In the second section, we review the classical
linear multistep theory for the numerical approach to ordinary differential
equations.

The problem classes, which as we will see are rather closely related to
each other, are stiff differential equations and differential equations of
singular perturbation type. Our introduction to them is complemented by
the presentation examples both of model problems and of actual
applications.

These two problem classes seriously defy traditional numerical me-
thods. The numerical approach to these problems consists of exposing
the limitations of the traditional methods and the development of
remedies. Thus, we include the review of the linear multistep theory
here since it is the traditional numerical theory for differential equations
and as such it supplies the point of departure of our subject.

1.1. STIFFNESS AND SINGULAR PERTURBATIONS

1.1.1. Motivation

Stiff differential equations are equations which are ill-conditioned in a
computational sense. To reveal the nature of the ill-conditioning and to
motivate the need to study numerical methods for stiff differential
equations, let us consider an elementary error analysis for the initial
value problem

y=—Ay, O<it <,

Here y is an m-vector and 4 is a constant m x m matrix. The dot denotes

(1.1.1)
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time differentiation. Corresponding to the increment 4 > 0, we introduce

the mesh points t, =nh, n=0, 1,.... The solution
Y, =yt
of (1.1.1) obeys the recurrence relation,
Yoy =€y, (1.1.2)

For convenience we introduce the function S(z) =e %, and we rewrite
(1.1.2) as

Yusy =S(AR)y,. (1.1.3)

The simplest numerical procedure for determining an approximation
u,toy,,n=1,2, ..., is furnished by Euler's method,

u, ,—u,=—hAu, n=12..., (1.1.4)
u,=y,.

Using the function K(z) = 1 — z, we may rewrite (1.1.4) as
u, ., =K(Ah)un. (1.1.5)

K(z) is called the amplification factor and K(Ah) the amplification operator
corresponding to the difference equation (1.1.4).
By subtracting (1.1.5) from (1.1.3), we find that the global error,

€=U, =Yy
obeys the recurrence relation

en+1=Ken+Ty". (1.1.6)
Here T = K — § is the truncation operator. (1.1.6) may be solved to yield

en+1 = Z KjTyn—j’

ji=0
from which we obtain the bound

le,l<n max |K|’ max I Ty,|. (1.1.7)

0<j<n-1 0<j<n-—1

Note that nh <. Here and throughout this text (and unless otherwise
specified) the double bars, || - |, denote some vector norm or the associated
matrix norm, as the case may be.
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If the numerical method is stable, i.e.,
K] <1 (1.1.8)
and accurate of order p, i.e.,
I Ty[ =0m"* |y, (1.1.9)

then the bound (1.1.7) shows that | e, | = O(h?). (Of course for Euler’s
method, to which case we restrict ourselves, p=1)

t for 0 <t <7, and we show that I TH = O(h?). For the latter we use the
spectral representation theorem which contains the assertion

T (hA)= Z T(h7,)P (A). (1.1.10)

j=1
Here we assume that the eigenvalues 4, j=1,..., m of A are distinct. The
P(z), j=1,...,mare the fundamental polynomzals on the spectrum of A.

(i.e., P(z) is the polynomial of minimal degree such that Pj( )= (5,.j,
i,j=1,...,m. Here 6, is the Kronecker delta.)

We thC chosen T(z) = K(z) — S(z) to be small at a single point, z = 0.
Indeed

T(z) = O(z*

This and (1.1.10) assures that || T'| = O(h?). More precisely we have
that

I T = O(| Ay |22, (L1.11)
where
|2 | = max |)‘j|.
1<j<m

One proceeds similarly, using the spectral representation theorem to
deal with the requirement of stability. For Euler’'s method we obtain
stability if

1=kt <l, j=Ll:m (1.1.12)
(See Definition 1.2.11 and Theorem 1.2.12 below.)

N'maxl iS
not too large, and (1.1.12) is achieved with a reasonable restriction on the
size of h. In turn (1.1.11) combined with the bound (1.1.7) for || e, || yields

an acceptable error size for a reasonable restriction on the size of /.
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1.1.2. Stiffness

For the time being at least, stiffness will be an informal idea.

A stiff system of equations is one for which |4,...| is enormous, so
that either the stability or the error bound or both can only be assured by
unreasonable restrictions on / (i.e., an excessively small / requiring too
many steps to solve the initial value problem). Enormous means, enormous
relative to a scale which here is 1/7. Thus, an equation with [4_, | small
may also be viewed as stiff if we must solve it for great values of time.

In the literature, stiffness for the system (1.1.1) of differential equations
is frequently found to be defined as the case where the ratio of the eigen-
values of A of largest and smallest magnitude, respectively, is large. This
definition is unduly restrictive. Indeed as we may see, a single equation
can be stiff. Moreover, this usual definition excludes the obviously stiff
system corresponding to a high frequency harmonic oscillator, viz.

J+w?ly=0, ®?large. (1.1.13)

Indeed neither definition is entirely useful in the nonautonomous or
nonlinear case. While stiffness is an informal notion, we can include most
of the problems which are of interest by using the idea of ill-conditioning
(i.e., instability). Suppose we develop the numerical approximation to the
solution of a differential equation along the points of a mesh, for example,
by means of a relation of the type (1.1.5). If small changes in u, in (1.1.5)
result in large changes in u,. . then the numerical method represented
by (1.1.5), when applied to the problem in question, is ill-conditioned. To
exclude the case wherein this unstable behavior is caused by the numerical
method and is not a difficulty intrinsic to the differential equations, we
will say that a system of differential equations is stiff if this unstable
behavior occurs in the solutions of the differential equations. More
formally we have the following definition.

DEFINITION 1.1.1. A system of differential equations is said to be stiff
on the interval [0,7 ], if there exists a solution of that system a component
of which has a variation on that interval which is large compared to 1/1.

We make the following observation about the informal nature of our
discussion.

REMARK 1.1.2. We may ask what the term ‘large compared to’ signifies
in a formal definition. In fact it has no precise meaning, and we are allowing
informal notions (like: reasonable restriction, enormous, acceptable, too
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many, etc.) with which some numerical analysts feel comfortable to find
their way into a formal mathematical statement. While allowing this
risks some confusion, we will for reasons of convenience continue to do so.
In order to minimize this risk and as a model for similar questions, we now
explain how this informality could be repaired in the context of Definition
1.1.1. Hereafter we will not return to this point for other similar problems.
The repair'is made by replacing single objects by a class of objects out of
which the single object is drawn.

For example, a proper alternate to Definition 1.1.1 could be the following.

DEFINITION 1.1.3. A collection of systems of differential equations is
said to be stiff on an interval [0, ], if there exists no positive constant M
such that the variation of every component of every solution of every
member of the collection is bounded by M.

The following example shows how treacherous the reliance on eigenvalues
to characterize stiffness can be; even in the linear case.

Example
y=A@)y, (1.1.14)

Alf) = [sin ot cos wt:|.

where

cos wt — sin wt
The eigenvalues of A(t) are 4 1. The matrizant of (1.1.14) is

sinh o

®(t) = B(t) + I cosh a.

g
Here I is the 2 x 2 identity matrix,
o =/2(1 — cos w)"/?

B(t):i[ll—coscut sin wt ]
w| sin wt coswt — 1

and

Thus for @ — o0,
®(1) = (cosh\/2 — 2 cos wt)(1 + O(w ™ ))I

uniformly for re[0,7].



