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A SHORT TABLE OF LAPLACE TRANSFORMS

Function f(t)

f(t) = ", n a nonnegative integer

f(t) = e*, a constant

f(t) = sin bt, b constant

f(t) = cos bt, b constant

fty =117

f(t) = uy(t)

f(t) = 8(t —a)

Transform of Derivatives
f

fll

Shifting Theorems

e(t)

ug(f(t — a)

Laplace Transform F(s)

n!
F(s) = s>0

F(s) = q_a,s>a
b
F(s) = 21p2 S >0
s
E(s) = 212t >0
T
F(s) = ‘/g s>0
—as
F(s) ==
F(s) =.e"¢

L{f') = sL[f] — f(0)
L[f""] = s* L[f] — sf(0) — f(0)

F(s—a)
e %F(s)

SOME SOLUTION TECHNIQUES FOR y’' = f(x, y)

Type

Separable

First-Order
Homogeneous

First-Order
Linear

Bernoulli
Equation

Exact

Standard Form
dy
P(Y) 4 = 9(0).
dy _ "
dx —f(xr y)' wit f

homogeneous of degree

zero [f(tx, ty) = f(x, y)].

dy _
2 TPy = q(x)-

Y4 (x)y = q(x)y"
ax TPy y"

M(x, y) dx + N(x, y) dy =0,
with My, = N,.

Technique

Separate the variables and
integrate directly.

Change variables: y = xV(x)
and reduce to a separable

equation.

d
i — Jp(x) dxy =
Rewrite as i (ye )

q(x) efPx) dx and
integrate with respect
to x.

Divide by y" and make
the change of variables
u = y="_ This reduces
the equation to a linear
equation.

The solution is ¢(x, y) = ¢,
where ¢ is deter-
mined by integrating
b, =M, ¢, =N.



THE METHOD OF UNDETERMINED COEFFICIENTS

The following table lists trial solutions for the differential equation P(D)y =
F(x), where P(D) is a polynomial differential operator.

F(x) Usual Trial Solution Modified Trial Solution
If P(a) # 0, choose: If a is a root of P(r) = 0 of
multiplicity m, choose:
cxkesx Yp=eMAg+Ax+ -+ Yp=x"e XAy + Ayx + - +
Agxk) Agx¥)
If P(a + ib) # 0, choose: If @ + ib is a root of P(r) =0
of multiplicity m, choose:
xhe®(acos bx  y, = e**[(Agcos bx + Y, = XMe“*[(Agcos bx +
+ B sin bx) Bysin bx) + x(A,cos bx + Bysin bx) + x(A;cos bx +
Bysin bx) - - - + Bysin bx) +-- - +
x¥(Aycos bx + Bysin bx)] x¥(Agcos bx + Bysin bx)]

If F(x) is the sum of functions of the above form then the appropriate trial
solution is the corresponding sum.

BASIC INTEGRALS

Function F(x) Integral [F(x) dx
n — n+1
X, n¥—1 Y S it ¥
1
— In x|+ ¢
x
1
e, a#0 ;e“"+c
sin x —cosx + ¢
cos X sinx + ¢
tan x In |sec x| + ¢
sec x In [sec x + tan x| + ¢
csc x In |esc x — cot x| + ¢
) 1 .
esin bx 212 €% (a sin bx — b cos bx) + ¢
1
e%*cos bx 2102 e (a cos bx + b sin bx) + ¢
In x xInx—x+¢
1 1 e
2+ 2 tan 2 + ¢
1 .- . _](x)
—\/P——xz' a sin™ 1| ~ +c
1
N In(x + VaZ+x2) + ¢
f(x)
0 In|f(x)|+ ¢

du
eu(x) — () + ¢
dx



An Introduction
to Differential Equations
and Linear Algebra



To Christina,
for lost time



Preface

In An Introduction to Differential Equations and Linear Algebra the standard material
on linear algebra and linear differential equations required in many sophomore
courses for mathematics, science, and engineering majors is introduced. I have
endeavored to develop an appreciation for the power of the general vector space
framework in formulating and solving linear problems. In particular, the theory
underlying the solution of linear differential equations is derived very simply as an
application of the vector space results. My aim has been to present the material in a
manner that is accessible to the student who has successfully completed three
semesters of calculus. It is definitely the intention that the student read the text, not
just the examples. Almost all the results are proved in detail, and therefore the level
of rigor is reasonably high.

The text begins with two chapters on the classical techniques for solving first-
order differential equations and some of their applications. It is here that the stu-
dent gains familiarity with the terminology and notation used in differential
equation theory and an appreciation for the types of problems whose mathematical
formulation gives rise to differential equations. The advantage of beginning with
these chapters is that differential equations can then be used to motivate and to
illustrate the more abstract theorems and definitions that form the basis of the lin-
ear algebra developed in Chapters 3 to 8. For example, the problem of finding the
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set of all solutions to the differential equation y’’ +y = 0 is used to motivate the
more abstract idea of the kernel of a linear transformation, T. Then, having proved
that the kernel of T is a vector space, we return to differential equations to conclude
that the set of all solutions to y”” + ay’ + by = 0 is a vector space. The question then
arises as to the dimension of the solution space. This question is answered in
Chapter 9, and the remainder of the text is concerned with introducing techniques
for solving linear differential equations and linear systems of differential equations.

For many students linear algebra is their first exposure to abstract mathemat-
ics, and they invariably have a very hard time of it. However, the use of differential
equations in developing the fundamental ideas can give the applied-oriented
reader both the motivation and direction for persevering with the abstractness of
the vector space framework.

There is certainly too much material to finish the whole text in one semester,
and so the chapters have been structured for maximum flexibility. At Fullerton our
fourth-semester linear algebra and differential equations course is structured
around Chapters 1 to 9 and 11. This material can be completed fairly easily in one
semester. In teaching this course I often cover Chapter 9 (Linear Ordinary Differ-
ential Equations) directly after Chapter 7 (Linear Transformations). This enables the
student to see a concrete application of the vector space framework to differential
equations and also provides a short break in the abstract development. Having
completed Chapter 9, I then return to Chapter 8 (Eigenvalues and Eigenvectors)
before finishing the course with a discussion of linear systems of differential
equations.

There are several chapters that can be covered rather rapidly if the instructor
feels there is too much detail. Particular instances are Chapters 1 and 2 (really all
that is needed for the remainder of the text are the introductory ideas in Section 1.1
and familiarity with linear differential equations). Also, Chapter 5 contains a fairly
detailed account of determinants for this level text. This reflects my own personal
feeling that the student obtains a firmer understanding of the idea of a determinant
by mastering the classical definition as opposed to the simpler inductive definition.
In Chapter 7 the inverse transformation is not needed unless the Laplace transform
is to be studied later, and so Section 7.3 may be omitted. Section 8.4 is not required
in the remainder of the text, and Section 8.3 is required only if the matrix exponen-
tial function is going to be discussed in Chapter 11.

Most of the exercises have been checked using the symbolic computer algebra
system Maple that is being developed at the University of Waterloo, Canada. In fact
I have used Maple quite extensively in constructing many of the exercise sets. Some
of the graphics in Chapter 10 and Section 13.6 were generated by Mathematica. All
the other figures were drawn using the graphics software Cricket Draw, and the
whole manuscript was produced on an Apple Macintosh computer.

Acknowledgments

The text has been extensively class tested over the passed three years. I would like
to thank my colleagues Harriet Edwards, Ted Hromadka, Vyron Klassen, John
Mathews, Ron Miller, and Edsel Stiel, who used various versions of the manuscript
at Fullerton, and especially Ernie Solheid, who checked the galley proofs thor-



Preface XV

oughly for mathematical accuracy. Their comments, criticisms, and suggestions
have contributed significantly to the final product. Indeed, to a large extent it was
the encouragement of Dr. Mathews and Dr. Stiel that provided the initial motiva-
tion for the development of this project from a set of supplementary class notes to a
full-blown textbook.

[ would also like to acknowledge the thoughtful comments of the many peo-
ple involved in reviewing the several drafts of this text, in particular William L.
Briggs, University of Colorado, Denver; Paul W. Britt, Louisiana State University,
Baton Rouge; John E. Brown, Purdue University; David Lesley, San Diego State
University; and David B. Surowski, Kansas State University. All these comments
were considered carefully in the final preparation of the text, and they have been of
invaluable help in reinforcing my own feelings as to how the material in this text
should be presented.

The person who has made the largest contribution to the accuracy of this text
is Walfred Lester. As Visiting Lecturer in the mathematics department at Fullerton
during the academic year 1988-1989, Walfred taught from the manuscript and
worked all the exercises. While doing so, he uncovered and corrected many of the
errors that were present at the time and made several suggestions regarding the
presentation of the material. I wish to express my thanks and appreciation for a
helpful, lively, and enjoyable interaction.

Thanks are also due to the production editor, Kathleen Lafferty, who has
done a superb job in overseeing all aspects of the production of this text.

I owe the greatest debt of gratitude to my wife, Christina Goode. Her contin-
ued support and encouragement throughout the development of this project has
been a constant source of inspiration, particularly during those times when it
seemed as though the manuscript would never be completed. In addition, her care-
ful proofreading has helped to minimize errors and to clarify the explanations in
several places. I dedicate this book to her.

Finally I would like to acknowledge the indirect influence of my mentor and
friend Professor John Wainwright.

Stephen W. Goode



MATRICES

Matrix Multiplication: If A = [a;;] is an m X n matrix and B = [b;j] is an n X p
matrix, then

n
AB = [ Z a,-kb,q»].
k=1
Zero Matrix: The m X n matrix whose elements are all zero.

Transpose, AT: Interchange row and column vectors in A.
1, ifi=j,

Identity Matrix: I, = [5;;], where §;; = [0’ ]

Symmetric Matrix: AT = A.

Skew-symmetric Matrix: AT = —A.

Upper Triangular Matrix: 4;; = 0 whenever i > j.

Lower Triangular Matrix: a;; = 0 whenever j > i.

Rank(A) = number of nonzero rows in any row echelon form of A.

DETERMINANTS

If A is an n X n matrix then

det(A) = z G(Pp P2 pn) A1py A2p, A3py * " ° Anp,

where the summation is over the n! permutations (py, p, . . ., p,) of the integers
1,2,3, 00, M

The Cofactor Expansion Theorem states that det(A) can be evaluated using either
of the following formulas:

n
det(A) = a;Ay + apApp + - + 4, Ay = Zﬂ.-,A;,-,
=

n
det(A) = ay;Ay; + ayiAy + - -+ aA, = Z]a,-inj,
£

where A;; denotes the cofactor of the element a;;.

SYSTEMS OF LINEAR EQUATIONS

1. Consider the m X n linear system Ax = b. Let r denote the rank of A, and
let r* denote the rank of the augmented matrix of the system. Then:
(a) If r < r* the system is inconsistent.
(b) If r = r* the system is consistent and:
(i) There exists a unique solution if and only if r* = n.
(ii) There exists an infinite number of solutions if and only if r* <n.

2. Ann X n linear system Ax = b has a unique solution if and only if det(A) # 0.

3. An n X n homogeneous linear system Ax = 0 has an infinite number of
solutions if and only if det(A) = 0.

4. Cramer’s rule: If det(A) # 0, then the unique solution to Ax = b is

det(By)

det(a) k=

matrix obtained by replacing the kth column vector of A with b.

(x1, X3, . . ., X,), where x;, = 1,2, ..., n, and B, denotes the



VECTOR SPACES

1. A set of vectors {vy, v,, ..., Vi) in a vector space V is said to:

(a) be linearly dependent, if there exist scalars ¢y, ¢y, . . ., ¢, not all zero,
such that cq;vy + v + - -+ v = 0.

(b) be linearly independent, if the only values of the scalars ¢y, ¢;, ..., ¢,
such that c;vy + vy + - -+ vy =0arec; =c, = - = ¢, = 0.

(c) span V, if every vector in V can be written as a linear combination of
Vi, Va, ..., Vy, thatis, if for any v € V there exist scalars ¢y, ¢5, ..., ¢4
such that v =c,v; + c,v, + - - - + vy

2. A set of linearly independent vectors that spans a vector space V is

called a basis for V.

(a) All bases in a finite dimensional vector space contain the same number
of vectors, and this number is called the dimension of V, denoted dim[V].

(b) If dim[V] = n, then any set of n linearly independent vectors in V
forms a basis for V.

LINEAR TRANSFORMATIONS

A mapping T : V --> W from the vector space V into the vector space W is
called a linear transformation if it satisfies

T(x +y) = T(x) + T(y), for all x and y in V,
T(cx) = cT(x), for all x in V and all scalars c.

1. The kernel of T, denoted Ker(T), is the set of all vectors in V that are
mapped to the zero vector in W. Thus Ker(T) = (x € V : T(x) = 0}. Ker(T)
is a subspace of V.

2. The range of T, denoted Rng(T), is the set of vectors in W that we obtain
when we allow T to act on every vector in V. Thus Rng(T) ={y € W :
T(x) =y for at least one x € V}. Rng(T) is a subspace of W.

EIGENVALUES AND EIGENVECTORS

1. For a given n X n matrix A, the eigenvalue-eigenvector problem consists of
determining all scalars A and all nonzero vectors v such that Av = Av.

2. The eigenvalues of A are the roots of the characteristic polynomial
p(A) = det(A — AI) =0, 1)

and the eigenvectors are obtained by solving the homogeneous linear
systems (A — AI)v = 0 when A assumes the values obtained in (1).

3. If A is nondefective and S = [vy, vy, ..., v,], where v, v,, ..., v, are
linearly independent eigenvectors of A, then $7'AS = diag(Ay, Ay, . .., A,),
where A;, A4, ..., A,, are the eigenvalues of A corresponding to the
eigenvectors vy, vy, ..., V,.

4. If A is a real symmetric matrix, then it has a complete set of (real)
orthonormal eigenvectors, say (s, 8, ..., 8,). If S={[s;, 85, ..., s,], then
S is an orthogonal matrix (S~! = ST), and STAS = diag(Ay, Ay, . . ., A,).

THE INVERSE OF AN n X n MATRIX A

An n X n matrix is said to be nonsingular if there exists a matrix A~! satisfying
AAT1=A"1A =1, A7!is called the inverse of A and is unique if it exists.

1. A7 ! exists if and only if det(A) # 0.
2. A1 exists if and only if rank(A) = n.

1
3. If A is nonsingular then A~! = ———adj(A), where adj(A) denotes the

adjoint of A. det(4)
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