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Preface

A considerable part of the vast development in Mathematical Finance over
the last two decades was determined by the application of stochastic methods.
These were therefore chosen as the focus of the 2003 School on “Stochastic
Methods in Finance”. The growing interest of the mathematical community in
this field was also reflected by the extraordinarily high number of applications
for the CIME-EMS School. It was attended by 115 scientists and researchers,
selected from among over 200 applicants. The attendees came from all conti-
nents: 85 were Europeans, among them 35 Italians.

The aim of the School was to provide a broad and accurate knowledge of
some of the most up-to-date and relevant topics in Mathematical Finance.
Particular attention was devoted to the investigation of innovative methods
from stochastic analysis that play a fundamental role in mathematical mod-
eling in finance or insurance: the theory of stochastic processes, optimal and
stochastic control, stochastic differential equations, convex analysis and dual-
ity theory.

The outstanding and internationally renowned lecturers have themselves con-
tributed in an essential way to the development of the theory and techniques
that constituted the subjects of the lectures. The financial origin and mo-
tivation of the mathematical analysis were presented in a rigorous manner
and this facilitated the understanding of the interface between mathematics
and finance. Great emphasis was also placed on the importance and efficiency
of mathematical instruments for the formalization and resolution of financial
problems. Moreover, the direct financial origin of the development of some
theories now of remarkable importance in mathematics emerged with clarity.
The selection of the five topics of the CIME Course was not an easy task be-
cause of the wide spectrum of recent developments in Mathematical Finance.
Although other topics could have been proposed, we are confident that the
choice made covers some of the areas of greatest current interest.

We now propose a brief guided tour through the topics chosen and through
the methodologies that modern financial mathematics has elaborated to unveil
Risk beneath its different masks.
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We begin the tour with expected utility maximization in continuous-time
stochastic markets: this classical problem. which can be traced back to the
seminal works by Merton, received a renewed impulse in the middle of the
1980’s, when the so-called duality approach to the problem was first devel-
oped. Over the past twenty years, the theory constantly improved, until the
general case of semimartingale stochastic models was finally tackled with great
success. This prompted us to dedicate one series of lectures to this traditional
as well as very innovative topic:

“Utility Maximization in Incomplete Markets”. Prof. Walter Schachermayer,
Technical University of Vienna.

This course was mainly focused on the mazimization of the expected utility
from terminal wealth in incomplete markets. A part of the course was dedi-
cated to the presentation of the stochastic model of the market, with particular
attention to the formulation of the condition of No Arbitrage. Some results of
convex analysis and duality theory were also introduced and explained, as they
are needed for the formulation of the dual problem with respect to the set
of equivalent martingale measures. Then some recent results of this classical
problem were presented in the general context of semi-martingale financial
models.

The importance of the above-mentioned analysis of the utility maximization
problem is also revealed in the theory of asset pricing in incomplete markets,
where the agent’s preferences have again to be given serious consideration,
since Risk cannot be completely hedged. Different notions of “utility-based”
prices have been introduced in the literature since the middle of the 1990’s.
These concepts determine pricing rules which are often non-linear outside
the set of marketed claims. Depending on the utility function selected, these
pricing kernels share many properties with non-linear valuations: this bordered
on the realm of risk measures and capital requirements. Coherent or convex
risk measures have been studied intensively in the last eight years but only
very recently have risk measures been considered in a dynamic context. The
theory of non-linear expectations is very appropriate for dealing with the
genuinely dynamic aspects of the measures of Risk. This leads to the next
topic:

“Nonlinear expectations, nonlinear evaluations and risk measures”, Prof.
Shige Peng, Shandong University.

In this course the theory of the so-called “ g-cxpectations™ was developed, with
particular attention to the following topics: backward stochastic differential
equations, F-expectation, g-martingales and theorems of decomposition of E-
supermartingales. Applications to the theory of risk measures in a dynamic
context were suggested, with particular emphasis on the issues of time consis-
tency of the dynamic risk measures.

Among the many forms of Risk considered in finance, credit risk has received
major attention in recent years. This is due to its theoretical relevance but
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certainly also to its practical implications among the multitude of investors.
Credit risk is the risk faced by one party as a result of the possible decline
in the creditworthiness of the counterpart or of a third party. An overview of
the current state of the art was given in the following series of lectures:

“Stochastic methods in credit risk modeling: valuation and hedging”, Prof.
Tomasz Bielecki, Illinois Institute of Technology.

A broad review of the recent methodologies for the management of credit risk
was presented in this course: structural models, intensity-based models, mod-
eling of dependent defaults and migrations, defaultable term structures, copula
based models. For each model the main mathematical tools have been described
i detail, with particular emphasis on the theory of martingales, stochastic
control, Markov chains. The written contribution to this volume involves, in
addition to the lecturer, two co-authors, they too are among the most promi-
nent current experts in the field.

The notion of Rusk is not limited to finance, but has a traditional and dom-
inating place also in insurance. For some time the two fields have evolved
independently of one another, but recently they are increasingly interacting
and this is reflected also in the financial reality, where insurance companies
are entering the financial market and viceversa. It was therefore natural to
have a series of lectures also on insurance risk and on the techniques to control
it.

“Financial control methods applied in insurance”, Prof. Christian Hipp, Uni-
versity of Karlsruhe.

The methodologies developed in modern mathematical finance have also met
with wide use in the applications to the control and the management of the
specific risk of msurance compantes. In particular, the course showed how the
theory of stochastic control and stochastic optimization can be used effectively
and how it can be integrated with the classical insurance and risk theory.

Last but not least we come to the topic of partial and asymmetric information
that doubtlessly is a possible source of Risk, but has considerable importance
in itself since evidently the information is neither complete nor equally shared
among the agents. Frequently debated also by economists, this topic was an-
alyzed in the lectures:

“Partial and asymmetric information”, Prof. Kerry Back, University of St.
Louis.

In the context of economic equilibrium, a survey of incomplete and asymmet-
ric information (or insider trading) models was presented. First, a review of
filtering theory and stochastic control was introduced. In the second part of the
course some work on incomplete information models was analyzed, focusing
on Markov chain models. The last part was concerned with asymmetric in-
formation models, with particular emphasis on the Kyle model and extensions
thereof.
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As editors of these Lecture Notes we would like to thank the many persons
and Institutions that contributed to the success of the school. It is our plea-
sure to thank the members of the CIME (Centro Internazionale Matematico
Estivo) Scientific Committee for their invitation to organize the School; the
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Incomplete and Asymmetric Information in
Asset Pricing Theory

Kerry Back

John M. Olin School of Business
Washington University in St. Louis
St. Louis, MO 63130
back@olin.wustl.edu

These notes could equally well be entitled “Applications of Filtering in Finan-
cial Theory.” They constitute a selective survey of incomplete and asymmetric
information models. The study of asymmetric information, which emphasizes
differences in information, means that we will be concerned with equilibrium
theory and how the less informed agents learn in equilibrium from the more
informed agents. The study of incomplete information is also most interesting
in the context of economic equilibrium.

Excellent surveys of incomplete information models in finance [48] and of
asymmetric information models [10] have recently been published. In these
notes, I will not attempt to repeat these comprehensive surveys but instead
will give a more selective review.

The first part of this article provides a review of filtering theory, in par-
ticular establishing the notation to be used in the later parts. The second
part reviews some work on incomplete information models, focusing on recent
work using simple Markov chain models to model the behavior of the market
portfolio. The last part reviews asymmetric information models, focusing on
the Kyle model and extensions thereof.

1 Filtering Theory

Let us start with a brief review of filtering theory. as exposited in [33]. Note
first that engineers and economists tend to use the term “signal” differently.
Engineers take the viewpoint of the transmitter, who sends a “signal,” which
is then to be estimated (or “filtered”) from a noisy observation. Economists
tend to take the viewpoint of the receiver, who observes a “signal” and then
uses it to estimate some other variable. To avoid confusion, T will try to avoid
the term, but when I use it (in the last part of the chapter), it will be in the
sense of economists.
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We work on a finite time horizon [0, 7] and a complete probability space
(2, A, P). The problem is to estimate a process X from the observations
of another process Y. In general, one considers estimating the conditional
expectation E[f(X;)|FY], where {F}} is the the filtration generated by Y
augmented by the P-null sets in A, and f is a real-valued function satisfying
some minimal regularity conditions but otherwise arbitrary. By estimating
E[f(X;)|FY] for arbitrary f, one can obtain the distribution of X; conditional
on F).

For any process ¢, we will use the conventional notation 0, to denote
E[6:|FY]. More precisely, 0; denotes for each t a version of E[0;|F}] chosen
so that the resulting process (#,w) — 6;(w) is jointly measurable.

Let W be an n dimensional Wiener process on its own filtration and define
Fi to be the o field generated by (X, Ws;s < t) augmented by the P null
sets in A. We assune for each ¢ that F; is independent of the o-field generated
by (W, — Wyt <u < v <T), which simply means that the future changes
in the Wiener process cannot be foretold by X. Henceforth, we will assume
that all processes are {F;}adapted.

The Wiener process W creates the noise that must be filtered from the
observation process. Specifically, assume the observation process Y satisfies

de = }14 dt + (“/V;: )/(j =0 (1)

where h is a jointly measurable R"-valued process satisfying F [U] lhe|? dt <
00.
Assume X takes values in some complete separable metric space, define
fr = f(X¢),and assume
(1f/ = gt dt + CU”,, (2)
for some jointly measurable process g and right-continuous martingale A
such that Ef()T lg/|?dt < oc. If X is given as the solution of a stochastic

differential equation and f is smooth, the processes g and M can of course be
computed from Ito’s formula. We assume further that E[f?] < oo for each t

and E [ ||fih]|? dt < oc.
The “innovation process” is defined as
dZ; = dY, — h, dt
(he — hy) dt + dW, (3)

I

with Zy = 0. The differential dZ is interpreted as the innovation or “surprise”
in the variable Y, which consists of two parts, one being the error in the
estimation of the drift A, and the other being the random change dW.

The main results of filtering theory, due to Fujisaka, Kallianpur, and Ku-
nita [22], are the following.

1) The innovation process Z is an {F) } Brownian Motion.
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2) For any separable L?-bounded {F} }-martingale H, there exists a jointly
measurable {FY }-adapted R" valued process ¢ such that Ef“[ | ¢ II?

dt < 0o, and
n

dH, =Y ¢ dZ;.
1=1
3) There exist jointly measurable adapted processes a' such that d[M, W], =
apdt, fori=1,..., N.
4) f evolves as

. - PN 7/
df, = Godt + (fh, - fibe +d,) dZ,, (4)

where fAh, denotes E[f; h,|}7'],

Part (1) means in particular that Z is a martingale; thus the innovations
dZ are indeed “unpredictable.” Given that it is a martingale, the fact that it
is a Brownian motion follows from Levy's theorem and the fact, which follows
immediately from (3), that the covariations are d(Z', Z’) = dt if i = j and 0
otherwise. Part (2) means that the process Z “spans” the {FY }-martingales
(which would follow from {F}'} = {F#}. though this condition does not hold
in general). Part (3) means that the square-bracket processes are absolutely
continuous, though in our applications we will assume M and the W' are
independent, implying o' = 0 for all 7.

Part (4) is the filtering formula. The estimate f is updated because f is ex-
pected to change (which is obviously captured by the term g dt) and because
new information from dZ is available to estimate f. The observation process
Y (or equivalently the innovation process Z) is useful for estimating f due to
two factors. One is the possibility of correlation between the martingales W
and M. This is reflected in the term &, dZ;. The other factor is the COrT elation
between f and the drift i, of Y. This is reflected in the term (fht f, h,)dZ,

Note that jh,, f,h, is the covariance of f; and h;, conditional on }'Y The
formula (4) generalizes the linear prediction formula

. cCovir,t
s=ge O oy
var(y)

which yields 7 = E[z|y] when x and y are joint normal.
We consider two applications.

1.1 Kalman-Bucy Filter

Assume X is distributed normally with variance o and

dX; = aX;dt + dBy,
dY; = cX; dt + dWy,
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where B and W are independent real-valued Brownian motions that are in-
dependent of Xj. In this case, the distribution of X; conditional on .7:,) is
normal with deterministic variance X;. Moreover,

dX, = aX,dt + X, dZ,, (5)

where the innovation process Z is given by

dZ; = dY; — X, dt. (6)
Furthermore,
M o_
L et = fg
24/ = "y(‘,)\l + l (7)
where a and — 3 are the two roots of the quadratic equation 142a2z—c?2? = 0,
1 q

with both a and 3 positive, A = ¢?(a+3) and v = (6% + 3)/(a—0?). One can
consult. e.g., [33] or [41] for the derivation of these results from the general
filtering results cited above. In the multivariate case, an equation of the form
(5) also holds, where Y is the covariance matrix of X; conditional on .7-',". In
this circumstance, the covariance matrix evolves deterministically and satisfies
an ordinary differential equation of the Riccati type, but there is in general
no closed-form solution of the differential equation.

1.2 Two-State Markov Chain

A very simple model that lies outside the Gaussian family is a two-state
Markov chain. There is no loss of generality in taking the states to be 0 and
1, and it is convenient to do so. Consider the Markov chain X satisfying

dX; = (1 - X,_)dN — X,_dN,. (8)

where X, = limg;; X, and the N' are independent Poisson processes with
parameters A’ that are independent of X,. This means that X stays in each
state an exponentially distributed amount of time, with the exponential dis-
tribution determining the transition from state i to state j having parameter
A'. This fits in our earlier framework as

dX; = gy dt + dM;,
where

g =1 =X, )\ = X, M and
dM, = (1 — X, )dM; — X,_ dM,
with M’ being the martingale M} = N} — N't.

Assume
dY, = h(X,_)dt + dW,, (9)
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where W is an n dimensional Brownian motion independent of the N' and
Xo. Thus, the drift vector of Y is h(0) or (1) depending on the state X;_.
In terms of our earlier notation, hy = h(X;_).

Write 7, for X,. This is the conditional probability that X; = 1. The
general filtering formula (4) implies!

dry = [(1 = m)A° — m A dt + (1 — m) [R(1) — h(0)] dZ:, (10)
where the innovation process Z is given by
dZ; =dY; — [(1 —7r,)11(0)+7r,h(1)] dt. (11)

This is a special case of the results on Markov chain filtering due to Wonham
[47].

Note the similarity of (10) with the Kalman-Bucy filter (5):.h(1)—h(0) is
the vector ¢ in the equation

dYy = h(X,-) dt + dW,
= [(l — X, )h(0) + Xf_h,(l)] dt + dW,
= h(0)dt + c X, dt + dW,

and m;(1 — 7¢) is the variance of X; conditional on F} .

2 Incomplete Information

2.1 Seminal Work

Early work in portfolio choice and market equilibrium under incomplete in-
formation includes [16], [19], and [23]. These papers analyze models of the
following sort. The instantaneous rate of return on an asset is given by

ds

& o= dt+odW, where

dpy = k(0 — ) dt + pdB

and W and B are Brownian motions with a constant correlation coefficient
p, and where g is normally distributed and independent of W and B. It is
assumed that investors observe S but not y; i.e., their filtration is the filtration
generated by S (augmented by the P null sets). The innovation process is

dz ="M 7R g4 aw,
a

which is an {F;”} Brownian motion. Moreover, we can write

! Note that (4) implies 7 is continuous and then from bounded convergence we
have 7 = E [X;— |7 ], 50 g = (1 — m)A” — m AL



