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Preface

The contents of this monograph fall within the general area of honlinear
functional analysis and applications. We focus on an important topic within
this area: geometric properties of Banach spaces and nonlinear iterations, a
topic of intensive research efforts, especially within the past 30 years, or so.

In this theory, some geometric properties of Banach spaces play a crucial
role. In the first part of the monograph, we expose these geometric properties
most of which are well known. As is well known, among all infinite dimen-
sional Banach spaces, Hilbert spaces have the nicest geometric properties.
The availability of the inner product, the fact that the proxrimity map or
nearest point map of a real Hilbert space H onto a closed convex subset K
of H is Lipschitzian with constant 1, and the following two identities

llz +yll? = [l2l]® + 2(z, y) + [lyll*, (%)

Az + (1= Nyll* = Allz]? + (1 = Nllgll? = AL = Vllz = gl*, (=)

which hold for all z,y € H, are some of the geometric properties that charac-
terize inner product spaces and also make certain problems posed in Hilbert
spaces more manageable than those in general Banach spaces. However, as
has been rightly observed by M. Hazewinkel, “... many, and probably most,
mathematical objects and models do not naturally live in Hilbert spaces”.
Consequently, to extend some of the Hilbert space techniques to more general
Banach spaces, analogues of the identities (*) and (#*) have to be developed.
For this development, the duality map which has become a most important
tool in nonlinear functional analysis plays a central role. In 1976, Bynum [61]
obtained the following analogue of () for I, spaces, 1 < p < oc:

llz +yll* < (0 = Dllel* + [lyl1* +2(x,j(y)), 2 < p < o0,

(= Dllz +yl1* < ||z + [lyl* +2(z.5(y)), L <p<2.

vii



viii Preface

Analogues of (xx) were also obtained by Bynum. In 1979, Reich [408] obtained
an analogue of (%) in uniformly smooth Banach spaces. Other analogues of
(%) and (**) obtained in 1991 and later can be found, for example, in Xu
[509] and in Xu and Roach [525].

In Chapters 1 and 2, basic well-known facts on geometric properties of Ba-
nach spaces which are used in the monograph are presented. The materials
here (and much more) can be found in any of the excellent books on this topic
(e.g., Diestel [206]; Lindenstrauss and Tzafriri [312]). The duality map which
is central in our work is presented in Chapter 3. Here, we have also computed
explicitly the duality maps in some concrete Banach spaces. In Chapters 4
and 5, we sketch the proofs of the analogues of the identities (x) and (xx)
obtained in 1991 and later. In the last section of Chapter 5, we present charac-
terizations of real uniformly smooth Banach spaces and Banach spaces with
uniformly Gateaux differentiable norms by means of continuity properties
of the normalized duality maps. Applications of the geometric properties of
Banach spaces presented in Chapters 1 to 5 to iterative algorithms for solu-
tions of nonlinear equations, an intensive and extensive area of research work
(Berinde [28] contains 1575 entries in the reference list on this topic) begin in
Chapter 6. To motivate some of the reasons for our choices of the classes of
nonlinear operators studied in this monograph, we begin with the following.

Let K be a nonempty subset of a real normed linear space E and let
T : K — K be amap. A point x € K is said to be a fired point of T
if Tx = x. Now, consider the differential equation %—";— + Au(t) = 0 which
describes an evolution system where A is an accretive map from a Banach
space E to itself. In Hilbert spaces, accretive operators are called monotone.
At equilibrium state, ‘fi—‘t‘ = 0, and so a solution of Au = 0 describes the
equilibrium or stable state of the system. This is very desirable in many
applications in, for example, ecology, economics, physics, to name a few.
Consequently, considerable research efforts have been devoted to methods
of solving the equation Au = 0 when A is accretive. Since generally A is
nonlinear, there is no closed form solution of this equation. The standard
technique is to introduce an operator 7" defined by T' := I — A where [ is
the identity map on E. Such a T is called a pseudo-contraction (or is called
pseudo-contractive). It is then clear that any zero of A is a fixed point of T.
As a result of this, the study of fixed point theory for pseudo-contractive
maps has attracted the interest of numerous scientists and has become a
flourishing area of research, especially within the past 30 years or so, for
numerous mathematicians. A very important subclass of the class of pseudo-
contractive mappings is that of nonexpansive mappings, where 7' : K — K
is called nonexpansive if ||Tx — Ty|| < ||z — y|| holds for arbitrary z,y € K.

Apart from being an obvious generalization of the contraction mappings,
nonexpansive maps are important, as has been observed by Bruck [59], mainly
for the following two reasons:
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e Nonexpansive maps are intimately connected with the monotonicity meth-
ods developed since the early 1960’s and constitute one of the first classes
of nonlinear mappings for which fixed point theorems were obtained by us-
ing the fine geometric properties of the underlying Banach spaces instead
of compactness properties.

e Nonexpansive mappings appear in applications as the transition oper-
ators for initial value problems of differential inclusions of the form
0 € 9 4 T(t)u, where the operators {T(t)} are, in general, set-valued
and are accretive or dissipative and minimally continuous.

If K is a closed nonempty subset of a Banach space and T' : K — K is

nonexpansive, it is known that 7' may not have a fixed point (unlike the case

if T is a strict contraction), and even when it has, the sequence {z,} defined
by p41 = Tzp,n > 1 (the so-called Picard sequence) may fail to converge to
such a fixed point. This can be seen by considering an anti-clockwise rotation
of the unit disc of R? about the origin through an angle of say, 5~ This map
is nonexpansive with the origin as the unique fixed point, but the Picard
sequence fails to converge with any starting point z¢ # 0. Krasnosel’skii

[291], however, showed that in this example, if the Picard iteration formula

is replaced by the following formula,

1
To € K, ZTny = E(wn—l—Twn),nZO, (0.1)

then the iterative sequence converges to the unique fixed point. In general, if
E is a normed linear space and T is a nonexpansive mapping, the following
generalization of (0.1) which has proved successful in the approximation of a
fixed point of T' (when it exists) was given by Schaefer [431]:

290 €K, Tpy1=(1-Nzp+ ATz, n>0, Ae(0,1). (0.2)

However, the most general iterative formula for approximation of fixed points
of nonexpansive mappings, which is called the Mann iteration formula (in the
light of Mann [319]), is the following:

20 €EK, Tpy1 = (1 —an)ry + anTx,, n >0, (0.3)

where {a,} is a sequence in the interval (0, 1) satisfying the following con-
oo

ditions: () lim a, = 0 and (i) Z a,, = 0o. The recursion formula (0.2) is
n—oo

n=1
consequently called the Krasnoselskii-Mann (KM) formula for finding fixed
points of nonexpansive (ne) mappings. The following quotation indicates part
of the interest in iterative approximation of fixed points of nonerpansive

mappings.
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e “Many well-known algorithms in signal processing and image reconstruc-
tion are iterative in nature ... A wide variety of iterative procedures used in
signal processing and image reconstruction and elsewhere are special cases
of the KM iteration procedure, for particular choices of the ne operator...”
(Charles Byrne, [63]).

For the past 30 years or so, the study of the Krasnoselskii-Mann iterative
procedures for the approximation of fixed points of nonexpansive mappings
and fixed points of some of their generalizations, and approximation of zeros
of accretive-type operators have been flourishing areas of research for many
mathematicians. Numerous applications of analogues of () and (**) to non-
linear iterations involving various classes of nonlinear operators have since
then been topics of intensive research. Today, substantial definitive results
have been proved, some of the methods have reached their boundaries while
others are still subjects of intensive research activity. However, it is appar-
ent that the theory has now reached a level of maturity appropriate for an
examination of its central themes.

The aim of this monograph is to present an in-depth and up-to-date cov-
crage of the main ideas, concepts and most important results on iterative
algorithms for approximation of fixed points of nonlinear nonexpansive map-
pings and some of their important generalizations; iterative approximation of
zeros of accretive-type operators; iterative approximation of solutions of vari-
ational inequality problems involving these operators; iterative algorithms for
solutions of Hammerstein integral equations; and iterative approximation of
common fixed points (and common zeros) of families of these mappings. Fur-
thermore, some important open questions related to these selected topics are
included.

We assume familiarity with basic concepts of analysis and topology. The
monograph is addressed to graduate students of mathematics, computer sci-
ence, statistics, informatics, engineering, to mathematicians interested in
learning about the subject, and to numerous specialists in the area.

I have great pleasure in thanking Professor Giovanni Vidossich of Insti-
tute for Advanced Studies, SISSA, Trieste, Italy for his constant encour-
agement, and Professor Billy Rhoades of the Department of Mathematics,
Indiana University, Bloomington, Indiana, USA, who read a version of the
first draft and whose comments spurred me on. Professors Vasile Berinde
and Naseer Shahzad helped with putting my Latex files into the Spinger
LNM format. I am very grateful to them for this. Very special thanks go
to the staff of the Publications Department of The Abdus Salam ICTP, for
their patience and ever-ready assistance in typesetting the original version
of the monograph. Finally, I have great pleasure in expressing my sincere
gratitude to my wife, Ify, and to our children for their encouragement and
understanding.
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sor M.A. Virasoro (Second Director), Professor K.R. Sreenivasan (Present
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Chapter 1
Some Geometric Properties of Banach
Spaces

1.1 Introduction

In the first part of this monograph (Chapters 1 to 5), we explore selected
geometric properties of Banach spaces that will play crucial roles in our study
of iterative algorithms for nonlinear operators in various Banach spaces.

In this chapter, we introduce the classes of uniformly convexr and strictly
convez spaces, and in Chapter 2, we shall introduce the class of smooth spaces.
All the results presented in these two chapters are well-known and standard
and can be found in several books on geometry of Banach spaces, for example,
in Diestel [206], or in Lindenstrauss and Tzafriri [312]. Consequently, we shall
skip some details and long proofs.

It is well known that if E is a real normed space, the following identities
hold

llz + 9112 = llz]|* + 2(z, y) + [ly]l?, (1.1)

Az + (1= Nyll* = Allel® + (1= Nlyl? = ML= Nllz —yl?,  (1.2)

for all z,y € E, X € (0,1) if and only if E is a real inner product space.

These geometric identities which characterize inner product spaces make
numerous problems posed in real Hilbert spaces more manageable than those
posed in arbitrary real Banach spaces. Consequently, to extend some of
the Hilbert space techniques to more general Banach spaces, analogues of
these identities have to be developed in such Banach spaces.

In Chapter 3, we introduce the duality map which has become a most
important tool in nonlinear functional analysis. We compute the duality
map explicitly for some specific Banach spaces. In arbitrary normed spaces,
the duality map will serve as the analogue of the inner product in Hilbert
spaces.

C. Chidume. Geomelric Properties of Banach Spaces and Nonlinear IHerations. I
Lecture Notes in Mathematies 1965,
© Springer-Verlag London Limited 2009
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1 Geometric properties

In Chapters 4 and 5, we present the analogues of the identities (1.1) and
(1.2) in uniformly convex and uniformly smooth Banach spaces, respectively.
Most of the results presented in these chapters were developed in 1991 or
later.

At the end of Chapter 5, we characterize uniformly smooth spaces and
spaces with uniformly Gateaux differentiable norm in terms of uniform conti-
nuity of the normalized duality map on bounded sets. These characterizations
will be used extensively in the monograph. We begin with some basic notions.

In 1936, A.J. Clarkson [191] published his famous paper on uniform con-
vezity (defined below). This work signalled the beginning of extensive research
efforts on the geometry of Banach spaces and its applications in functional
analysis.

1.2 Uniformly Convex Spaces

Let X be an arbitrary normed space and for fixed zg € X, let S;.(zg) denote
the sphere centred at x¢ with radius r» > 0, that is,

Sr(zo) :i={x € X : ||z — x| =7}

Definition 1.1. A normed space X is called uniformly convez if for any € €
(0,2] there exists a d = 6(¢) > 0 such that if z,y € X with ||z =1, |ly|| =1

and ||z — y|| > ¢, then ”% (17+y)H <1-4.

Thus, a normed space is uniformly convex if for any two distinct points  and
y on the unit sphere centred at the origin the midpoint of the line segment
joining x and ¥ is never on the sphere but is close to the sphere only if 2 and
y are sufficiently close to each other.

We note immediately that the following definition is also used: A normed
space X is uniformly conver if for any £ € (0,2] there exists a § = §{c) >
0 such that if z,y € X with ||z|| < 1,|ly|| < 1 and ||z — y|| > &, then
||3(x +y)|| <1 — 4. In the sequel we shall use either of the two definitions.

Theorem 1.2. L, spaces, 1 < p < oo, are uniformly convex.
Proof. See e.g., Diestel [206].

Theorem 1.3. Let X be a uniformly convex space. Then, for anyd > 0, £>0
and arbitrary vectors z,y € X with ||z|| < d, ||y|| < d,|lx—y| > &, there erists

a 0 > 0 such that i
|5 @ < [1-5(5)] -

Proof. For arbitrary x,y € X, let 21 = 5,22 = 43, and set £ = 5. Obv 1ouslv
£ > 0. Moreover, |z1]| < 1,[|z2] <1 and [lz; — 22| = |I$ yl = 5§ =¢.
Now, by uniform convexity, we have for some 6 = §(5) >0



1.3 Strictly Convex Banach Spaces 3
1 -
|5 G+ 2| <1500,

that is,
1 €
il <1-— e
HQd <‘”+y)H—1 é(d)’
which implies,

€

|3 @ +al<[i-5(3)]e

The proof is complete. O

Proposition 1.4. Let X be a uniformly convex space and let o € (0,1) and
g > 0. Then for any d > 0, if z,y € X are such that ||z|| < d,||y| < d,
|x —y|| > &, then there exists § =6 (5) >0 such that

laz + (1 — a)y|| < [1 _ 95 (2) min{a, 1 — a}]d.

Proof. See Exercises 1.1, Problem 3.

1.3 Strictly Convex Banach Spaces

Definition 1.5. A normed space E is called strictly convex if for all z,y €
E.z #y|lo]l = lyll = 1, we have |]Az + (1 - N)yl| < 1V A € (0,1).

Theorem 1.6. Fvery uniformly convex space is strictly conver.
Proof. See Exercises 1.1, Problem 4.

Theorem 1.6 gives a large class of strictly convex spaces. However, we shall
see later that some well known Banach spaces are not strictly convex.

We first give two examples of Banach spaces which are strictly conver but
not uniformly conver.

Erample 1.7. (Goebel and Kirk, [230]). Fix x4 > 0 and let C[0, 1] be endowed
with the norm ||.||,, defined as follows,

1 1
2
lell = lallo + ([ o))",
where ||.||op is the usual supremum norm. Then,
zllo < llzllu < (1 +mllxllo, = € C[0,1],

and the two norms are equivalent with ||.||,, near ||.||p for small u. However,
(C10,1],1].]0) is not strictly convex while for any p > 0, (C[0,1],][.]],) is.
On the other hand, for any £ € (0,2] there exist functions z,y € C[0,1]



