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PREFACE

Speaking in 1966 before the Society of Industrial and Applied Mathe-
matics, the late George E. Forsythe, then Chairman of the Computer
Science Department at Stanford University, stated:

It is safe to say that matrix computation has passed well beyond
the stage where an amateur is likely to think of computing methods
which can compete with the better-known methods. Certainly one
cannot learn theoretical linear algebra and an algebraic programming
language, and nothing else, and start writing programs which will
perform acceptably by today’s standards. There is simply too much
hard-earned experience behind the better algorithms, and yet this
experience is hardly mentioned in mathematical textbooks of linear
algebra.

Professor Forsythe went on to point out that most of this hard-earned
experience has been accumulated since 1953. The impetus for this extra-
ordinary development of numerical linear algebra has been provided by
the demand for efficient, self-contained matrix algorithms suitable for use
on a high-speed digital computer.

Today linear algebra textbooks still do not mention this hard-earned
experience. The gains of the past 20 years are, for the most part, contained
in advanced treatises, in journal articles, and even in unpublished technical
reports. The consequence of this is that many people whose daily business
involves computations with matrices are unacquainted with the best aigo-
rithms and their properties. Moreover, specialists in other areas of numer
ical analysis are frequently unaware of how the techniques of numerical
linear algebra may be applied to their problems.

The purpose of this book is to provide a reasonably elementary introduc-
tion to some of the more important algorithms for matrix computations
and to the techniques by which these algorithms may be analyzed. It is
addressed to the beginner in numerical analysis as well as to the advanced
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student in the sciences who wishes to know more about the art of matrix
computations. While the book is intended primarily as a text, it is hoped
that its supplementary notes and bibliography will also make it a useful
reference.

Numerical linear algebra is far too broad a subject to treat in a single
introductory volume. I have chosen to treat algorithms for solving linear
systems, linear least squares problems, and eigenvalue problems involving
matrices whose elements can all be contained in the high-speed storage of
a computer. By way of theory, I have chosen to discuss the theory of norms
and perturbation theory for linear systems and for the algebraic eigenvalue
problem. These choices exclude, among other things, the solution of large
sparse linear systems by direct and iterative methods, linear programming,
and the useful Perron-Frobenious theory and its extensions. However, a
person who has fully mastered the material in this book should be well
prepared for independent study in other areas of numerical linear algebra.

Since most of the algorithms discussed in this book have been published
as ALGOL Oor FORTRAN programs, no program listings are given. However,
it is a long step from a mathematical description of an algorithm to its
efficient implementation on a computer. To illustrate the common tech-
niques for conserving computer storage and operations, I have presented
many of the algorithms in an informal algorithmic language, which is
described in Chapter 2.

Some of the most useful results in numerical analysis consist of observa-
tions that cannot be proved in general but are nonetheless true most of
the time. For example, the stability of Gaussian elimination with partial
pivoting depends on the elements of the reduced matrices remaining of
moderate size. Since matrices are known for which the elements become
quite large, one cannot prove unconditionally that Gaussian elimination
is stable. However, it has been observed that this growth does not occur
with the matrices one usually encounters in practice. Similarly, error results
phrased in terms of a vector norm give an imprecise idea of what is happen-
ing to the individual components of the vector; but in many applications
such an imprecise idea is sufficient. It .would be wrong to exclude such
observations from the book because they are not mathematically rigorous.
However, it is also important for the beginner to have a clear idea of what,
on one ‘hand, can be proved about an algorithm and what, on the other, is
true of it most of the time. -Accordingly, 1 have segregated the rigorous
results into theorems and left discussions and empirical observations in the
body of the text.
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,One of the major advances in nunterical lincar alzebra has been the

velopment of techniques for analyzing the ctfects of rounding crio on
matrix algorithms. However, even though the analyses are usually con-
ceptually straightforward, they are often veryv tedious to present. Mere
over, concentration on the details of a rounding-error analysis often cis
scures real purpose of the analysis, v hich is to demonstrate thie stubiticy
of an algorithm or to expose the conditions under which it may ooome
unstable. For this reason, although results from rounding-crror anclyses
are frequently quoted in the teat, only two representative anaiyses are given
in Appendix 3

The first LhdptLI‘ of the book contains a f\nrlx complete review of ele-
mentary lincar algebra. and a bright student micht tind it suflicient, Or-
dinarily, though, a course based on this book should reguire a sear of
aleulus and a sophomore course in linear algebra or matrix theery. m
which case the material in the first chapter can be used selectively to fiii
gaps in the background of the students. Particular attention should be paid
to Sections 1.3 and 1.4, which treat material on matrix structure and matrix
operations that is not usually stressed in hinear algebra courses.

An instructor should be able to use the book at several'levels. since really
difficult material is introduced oniy in the kiter chapters. In particular. the
content of the first three chapters supplemented by material from Secuons
4.4 and 4.5 would comprise a respectable clementary course in the direct
solution of linear systems.& 1 have taught the contents of Chapters |5
in a one-semester introductory undergraduate course and the entire Fook
in a one-semester graduate course. By emphasizing the deriations Ot the
algorithms and the meanings of the theorems {as opposed to ther proots),
it should be possible to present a large part of this boek to o refitnely
unsophisticated audience. However, this can be corricd oo fur. For ox-
ample, a good grasp of the notion of orthogonality is required for the
section on the linear least squares problem.

The nature of the material does not lend itself well to routine ¢ e ~es.
and the problems ut the end of cach section are relatively ditlicuis Fiow coer,
many of them have concise solutions that exploit the power ¢f manin
methods, and the student will iind it profitable te hunt for them. The
instructor can of course suppiement the problems with preong ming
assignments. '
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PRELIMINARIES CHAPTER 1

The subject of this book is the description and analysis of computational
methods involving vectors and matrices. In this chapter we shall develop
the elementary theory which underlies our subject. This development has
two aspects: first the definition of vectors, matrices, and their operations;
second the abstract relationships between various concepts that grow out
of the idea of a vector or a matrix, such as linear dependence, column
spaces, and so on. Facility with matrix operations is required to understand
the description of the algorithms to be presented later; insight into matrix
theory is required to understand their analyses. :

We shall be concerned with real n-space. When n = 2 this is, in effect,
the Euclidean plane, and when n = 3, the three-dimensional space of our
everyday experience. It follows that many general theorems can be visualized
as geometric facts about the plane or three-dimensional space. Conversely,
our geometric knowledge of two- or three-dimensional space can often be
directly extended to general theorems about n-space. We shall develop
this geometric point of view informally in this chapter.

Most of the algorithms dealing with the rectangular arrays of numbers
called matrices proceed by a succession of transformations that introduce
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new zeros into the array, finally arriving at a conveniently simple form. It
is not surprising then that there is an extensive terminology associated with
the distribution of zeros in a matrix. Moreover, it is important to know
what distributions are preserved by the standard matrix operations. These
points are also treated in this chapter.

1. THE SPACE R

The idea of a vector in real n-dimensional space is a natural generalization
of the representation of points in a plane by Cartesian coordinates. In this
representation, a special point is distinguished as an origin and two per-
pendicular lines called coordinate axes are constructed through this point.
Then each point p in the plane can be represented as an ordered pair
(&,, &) whose first and second elements are obtained by projecting p on the
first and second coordinate axes, respectively (Fig. 1). Of course the point
p and the ordered pair or vector (&, &) are different objects; however,
their relation is so intimate that one often speaks of the point (§;, &,) and
proves geometric theorems about the plane by manipulating ordered pairs
of numbers rather than points.

Following this lead, we shall speak of ordered n-tuples as n-vectors.
However, for reasons that will become clear later, it is convenient to arrange
these numbers in a column rather than in a row.

DEFINITION 1.1. An n-vector x is a collection of » real numbers
&, &, ..., &, arranged in order in a column:

&
&

én
The numbers &, &,, ..., &, are called the components of x.

When »n is fixed or known from context, it is customary. to refer to
the vector x rather -than the n-vector x. We shall denote the set of all
n-vectors by R", which will be called the vector space R", br simpiy the
space R". The field of real numbers will be denoted by R and will be referre
to as scalars. :
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§,

Fig. 1

EXAMPLE 1.2. The elements of the vector space R' may be placed in a
natural correspondence with the elements of the field R as follows. Each
vector (@) € R! is associated with the scalar @« € R and vice versa. Strictly
speaking, the space R! and the field R are distinct mathematical objects.
However, we shall often identify the two, using members of R' as scalars
and conversely regarding scalars as members of R.

The following notational conventions will be used throughout the book.
Lower case Greek letters will denote scalars; lower case Latin letters will
denote vectors. Wherever possible we shall attempt to represent the com-
ponents of a vector by the corresponding Greek letter. Thus, unless other-
wise stated, the scalar ; is to be taken as the ith component of the vector a.
Since the correspondence between the Greek and Latin alphabets is not
perfect, some of the associations, which are listed in Appendix 1, are
artificial. Particular note should be made of the association of x with &
and y with 7. As an exception to the above conventions we shall often use
lower case Latin letters as subscripts and summation indices.

As was noted above, a vector x in R? is associated with a point in the
plane whose coordinates are &, and &,. Similarly, a vector x in R® is as-
sociated with a point in three-dimensional space whose coordinates are
&, &, and &,. It is customary to represent a vector graphically by drawing
an arrow from the origin to the point associated with the vector (Fig. 2).

Two n-vectors are equal if and only if their corresponding components
are equal. Thus the vector equality

a=>b

is equivalent to the set of scalar equalities

o;=p; (=12,...,n).
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Fig. 2

In particular, to prove that two vectors are equal it is only necessary to
show that their components are equal, and to define a new vector it is
only necessary to specify how its components are formed.

We now turn to the first of the vector operations, the sum of two vectors.

DEFINITION 1.3. Let @, b€ R*. The sum of a and b, written a -+ b,
is the n-vector ¢ whose components are given by

vi = a; + B;.

The sum of two vectors has the following geometric interpretation. The
vectors a and b form the sides of a parallelogram with one corner at the
origin. The sum of a and b is then the diagonal of the parallelogram that
proceeds from the origin (Fig. 3).

Fig. 3

The sum of two vectors has some of the properties of the usual sum of
two scalars, as is shown in the following theorem.

THEOREM 1.4. Let g, b, ce R*. Then

l.a+b=5b+a,
2.(a+b)+c=a+ (b+ o).
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PROOF. To prove part 1, let x=a + b and y = b 4+ a. Then by the
properties of R,
fi=a+pi=hi+ o=

Hence by the above observations on the equality of vectors, x = y. To
prove part 2, let x =(a+ b) + cand y =a + (b + ¢). Then

Si=(+B)+yi=ai+ @i+ vi)=mn
Hence x =y. W

Property 1.4.2 says that the vector sum is an associative operation. More
generally, if a,, a,, ..., a, € R the sum @, + a, + --- + a, is the same,
irrespective of the order in which sums are grouped. Likewise it follows
from 1.4.1 that the sum @, + a, + --- + a, is unaltered when the order of
the a;'s is changed. For example,

G t+at - ta=at+ @+ - +ar

DEFINITION 1.5. The zero vector in R* is the vector whose # components
are zero.

For all n we shall denote the zero vector in R* by the same symbol “0”,
which is also used to denote the scalar zero. Where the meaning of the
symbol “0” is not specified, it will be clear from the context what is meant.

The zero vector has some of the properties of the number zero.

THEOREM 1.6. Let ae R". Then

l.a+0=a,
2. there is a vector, written —a, in R* such that g + (—a) = 0.

PROOF. Let b = a 4+ 0. Then
Bi=oa;+0=a
and b = a, which establishes part 1. For part 2, let

—ay

—ay
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and ¢ = a + b. Then
vi=a;+fi=a;+ (—o) =0.
Thus ¢ = 0 and b is the vector —a sought in part 2. m
The vector —a of the second part of Theorem 1.6 is simply the vector

obtained by changing the signs of the components of a. Geometrically,
this means that the vector a is reflected through the origin (Fig. 4).

Fig. 4

The symbol “—" has been used for the unitary operation that, given the
vector a, produces the vector —a of Theorem 1.6. We shall also use -the
symbol to denoted the binary operation of subtraction. Specifically, given
the vectors a and b, we defined their difference a — b by

a—b=a-+ (—b).

It is easily verified that the difference operation satisfies the usual laws of
subtraction among scalars; for example,

a—b=—(b—a).

The second important operation with vectors is the operation of scalar
multiplication.

DEFINITION 1.7. Let A€ R and a € R". The product of 4 and a, written
A - a or Aa, is the n-vector b whose components are given by

ﬂ‘i = Za,-.

Geometrically, the operation of multiplying the vector a by the scalar A
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changes the length of a by a factor of | A|. If 1 is negative, a is also reflected
through the origin.

THEOREM 1.8. Let 4, u€ R and a, b€ R* Then

1. (Ap)a = A(ua),

2. (A + p)a = Aa + pa,
3. Ma+ b) =Aa+ b,
4. 1-a=aa.

PROOF. We shall establish property 3, leaving the rest for Exercise 1.3.
In stating the theorem we have followed the usual convention of allowing
multiplication to take precedence over addition, so that Aa + ub means
(Aa) + (ub). Let x = A(a + b) and y = Aa + Ab. Then

& = Mo + B;) = (Ay) + (AB:) = s,

which establishes part 3. =

In the above development we have defined vectors and their operations
in terms of the real numbers. The properties listed in Theorems 1.4, 1.6, 1.8
are then immediate consequences of the properties of real numbers. Al-
ternatively, we could take the properties of the theorems as axioms de-
scribing the properties of a sum and product over some set of objects V.
Specifically we call a set O an abstract vector space (over the real numbers) if

1. there is a sum ‘4 defined among the elements of VU that satisfies
the properties listed in Theorem 1.4,

2. there is an element “0” of D that satisfies the properties listed in
Theorem 1.6,

3. there is a product *““-” defined between the real numbers and the
elements of O that satisfies the properties listed in Theorem 1.8.

The elements of an abstract vector space need not be n-tuples of real
numbers, as the following example shows.

EXAMPLE 1.9. Let U be the set of all real-valued functions defined on
[0,1). If f,g€ 0, define h = f+ g as the function whose values are
h(&) = f(&) + g(é), £€[0,1]. If f€ O and A€ R, define A = Af as the
function whose values are h(&) = Af(£). Let “0” be the function that is
identically zero on [0, 1]. Then with these definitions, D is a vector space.
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The properties of an abstract vector space allow us to establish theorems
that are not immediately obvious. However, the proofs may be tedious.
For example, the following is a proof of the theorem that if U is an abstract
vector space and a € 0, then 0 - a = 0. The properties that ensure each
equality are listed to the side. (Incidentally, note that in the equation 0 - a
= 0, the symbol “0”" is used in two ways; on the left it is the scalar zero,
on the right the zero vector.)

0=a+ (—a), 1.6.2,
=1-.a+ (—a), 1.8.4,
=0+1)-a+ (—a), 1+0=1,

=©0-a+1:.a)+ (—a), 1.8.2,
=0-a+[1-a+ (—a)), 1.4.2,

=0.a+ [a+ (—a)] 1.8.4,
:0-a+0, l.6‘2,
=0-a, 1.6.1.

On the- other hand, to verify this fact about R” is easy. Let 5 =0 - a.
Then B; =0 - a; = 0; hence b = 0. It is often the case that theorems
concerning abstract vector spaces are trivialities when stated about 2",
Since in this chapter we shall be concerned exclusively with R, we shall not
develop the theory of abstract vector spaces. Whenever a fact can be easily
demonstrated by appealing to the properties of real numbers, we will use it,
leaving its verification as an exercise.

EXERCISES

1. Perform the indicated calculations.

1 =1 El U

@ (3)+A 7)o@ (2)-(7)
1 1 0 2

(©) ﬁ(a)—l—(l), (d)(l)+r<10),
o? 1 0 |
1 0 0

(e) §1<0> + 52(1 ) + 53(0>.
0 0 1



