UCSD Pascal

Featuring the
Apple’lle and Il Plus

Haigh/Radford

UCSD Pascal

Featuring the
Apple’lle and Il Plus

ROGER W. HAIGH
West Virginia Northern Community College

LOREN E. RADFORD
Baptist College at Charleston

PWS PUBLISHERS
Boston

PWS PUBLISHERS

Prindle, Weber & Schmidt - &« Willard Grant Press « s+ Duxbury Press - @
Statler Office Building + 20 Park Plaza « Boston, Massachusetts 02116

“UCSD" is a trademark of the Regents of the University of California. ““‘Apple’ is a registered
trademark of Apple Computer, Inc.

© Copyright 1984 by PWS Publishers

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission, in writing, from the

publisher.
PWS Publishers is a division of Wadsworth, inc

Library of Congress Cataloging in Publication Data

Haigh, Roger W.
UCSD Pascal.

Includes index.

1. Apple lle (Computer)—Programming. 2. Appie Il Plus
(Computer)—Programming. 3. UCSD Pascal (Computer
program language) |. Radford, Loren E. II. Title.

. Title: U.C.S.D. Pascal.
QA76.8.A6623H35 1984 001.64'2 83-21974

ISBN 0-87 150-457-X

ISBN 0-87L50-457-X

Cover photo created by Dave Kamins, Computer Graphics Laboratory, Boston
University.

Cover Design by Trisha Hanlon. Text design by Sara Waller. Composition by Science
Press, Inc. Artwork by Atlantic Offset Company. Text printed and bound by The
Maple-Vail Book Manufacturing Group. Covers printed by New England Book
Components.

Printed in the United States of America
84 8 86 87 88 — 10 9 8 7 6 5 4 3 2 1

PROGRAM AGEINDAYS;
CONST YEARDAYS = 365; constant declaration (pp. 56-57)
TYPE MONTHS = (JAN,FEB,MAR,APR,MAY, JUN,
JUL ,AUG,SEP,0CT,NOV,DEC);
LONG = INTEGER [61;
VAR BY,CY,BYDAYS,CYDAYS : INTEGER;
TOTDAYS : LONG;

user-defined ordinal
type declaration (pp. 167-169)

} global variable declarations (pp. 57, 182)

FUNCTION LEAPYR(YR:INTEGER) :BOOLEAN;
BEGIN
LEAPYR := FALSE; user-defined Boolean
IF (YR MOD 4 = 0) AND (YR <> 0) THEN function (pp. 181-183)
LEAPYR := TRUE
END;

PROCEDURE FINDDAYSINYEAR
(WHICHYEAR:STRING;VAR DAYS,YR:INTEGER); formal parameter list (p 182)

VAR I1 : MONTHS; , ‘
MO : INTEGER; local variable declarations (pp. 193-195)

BEGIN
WRITECENTER ',WHICHYEAR,' IN THE FORM 10 14 83 ')
READLN(MO,DAYS,YR);
FOR I1 := JAN TO DEC DO BEGIN FORloop header (pp. 154-156)
IF CORDCI®) + 1 = MO) THEN BEGIN
IF (LEAPYRCYR) AND (MO > 2)) THEN DAYS := DAYS + 1;

EXITCFINDDAYSINYEAR)
END;
CASE 11 OF
JAN,MAR,MAY, JUL,AUG,O0CT,DEC : DAYS := DAYS + 31; CASE
APR,JUN,SEP,NOV : DAYS := DAYS + 30; statement
FEB : DAYS := DAYS + 28 (op. 129-133)
END

END;
IF (LEAPYRCYR) AND (MO > 2)) THEN compound Boolean expression (pp. 127-129)
DAYS := DAYS + 1

END;
PROCEDURE SUMDAYS(BY,CY:INTEGER;VAR T:LONG);
VAR I2 : INTEGER;
BEGIN user-defined
FOR 12 := BY TO CY — 1 DO BEGIN L procedure
T := T + YEARDAYS; use of accumulator (pp. 148-152) (pp. 181-190)
IF LEAPYRCI2) THEN T := T + 1
END
END;

BEGIN
FINDDAYSINYEARCBIRTH DATE',BYDAYS,BY); procedure calls with

FINDDAYSINYEARC'CURRENT DATE',CYDAYS,CY) ;| actual parameters (pp. 183~190)
TATDAYS := CYDAYS — BYDAYS; assignment statement (p. 59)
SUMDAYS(BY,CY,TOTDAYS);
IF C((BY > CY) OR C(TOTDAYS < 0)) THEN
WRITELNCYOU ARE NOT YET BORN."
ELSE BEGIN IF-THEN-ELSE statement (pp. 121-124)
WRITECCONGRATULATIONS, YOU ARE ")
WRITELNCTOTDAYS,' DAYS OLD TODAY."
END

END.

PREFACE

We wrote this book hoping that it would help a wide variety of people to learn to
program a computer using the Pascal language. We were motivated partiy by the belief
that the ability to program a computer will become increasingly important in the
future—even for people who do not consider themselves to be computer scientists.
There is a tendency for many people to view learning how to program as a vocational
skill—much like the ability to use a calculator or a typewriter. But there is a growing
body of opinion that suggests that the ability to develop and debug a computer
program contributes to the development of human problem-solving skills and to the
improvement of the thinking process itself. An essential aspect of our approach to
teaching Pascal involves problem-solving techniques that are language independent.

The text is intended for use in a beginning-tevel, one-semester Pascal course and
for use by individuals who desire to teach themselves to program. In addition to
teaching Pascal, we also attempt to introduce the learner to problem-solving
technigues, which include the use of a simple, flexible algorithmic language. In creating
even a moderately complex program, the process is always complicated by the
idiosyncrasies of the dialect of the language available. For that reason, we prefer to
teach one how to develop a solution in a simple, but flexible, algorithmic fanguage and
then to translate it into Pascal (Chapter 3). We have found such an approach
indispensable in developing large-scale research and administrative applications in
other languages.

Of the one hundred or more existing computer languages, Pascal has been
growing in importance. This is probabiy because the language is highly structured and
quite powerful, yet not particularly difficult. Thus, Pascal is suitable for a wide variety of
applications ranging from business to the scientific.

in presenting the Pascal language, we concentrate on the Apple version of the
UCSD dialect of Pascal, which is a complete environment for program development.
Since the Apple modifications to UCSD Pascal are few, the text can be used effectively
with any implementation of UCSD Pascal. In the first two chapters we introduce the
reader to the UCSD Pascal system and its major components: the Filer, the Editor and
the Compiler. A more detailed treatment of the Editor can be found in Appendix D.

We assume that readers have no prior computing experience; however, those
with some experience may be able to move more quickly and tackle some of the more
complex programming projects. In so far as mathematical skills are concerned, we

Preface

assume only that readers of this book have an understanding of arithmetic. Since this
text is intended to be useful to a wide audience, including people with backgrounds and
interests in the sciences as well as those interested in business, the social sciences,
and humanities, some may find occasional sections that require more detailed
mathematical treatments. Chapter 14 involves several statistical techniques and may
be omitted. Also, some mathematically oriented exercises are scattered throughout the
book. Those so inclined can avoid such exercises in favor of others closer to their
interest.

The first ten chapters are intended for use in linear order. The remaining chapters
may be selected in any order or even omitted, if time constraints require it. The only
exception is the fact that Chapter 14 and the first part of Chapter 15 assume basic
familiarity with Turtlegraphics, which is presented in Chapter 12. In these later chapters,
we present various programming applications likely to be of interest to students of
differing backgrounds. Chapter 10 introduces the CHAR and STRING data types and
provides several useful examples of programming with textual data. A word frequency
technique often of interest to those in linguistics is also presented. Appendix D expands
considerably upon the earlier treatment of character data. In that appendix, we invite
the student to join us in creating a word-processing printer routine, which, when used
with the system Editor, constitutes a functioning word processor. Students are
encouraged to develop that software more fully themselves as a programming project.
Chapter 11 presents information on pointers and files. Chapter 12 introduces
Turtlegraphics with a wide variety of application programs. In Chapter 13, we build a
LOGO Turtlegraphics interpreter, which is both an interesting project for extending
one’s knowledge of programming in Pascal and an interesting piece of software to use.
Chapter 14 presents a number of basic statistical techniques and the graphic display of
their results. The first half of Chapter 15 presents various technigues for drawing maps
using Turtlegraphics. The last half of that chapter demonstrates techniques for playing
melodies and even harmonies on the Apple.

Finally, in Appendix C, we present a number of useful procedures and functions
that we use from time to time in various chapters. This library is available on diskette
from the the authors at cost. A second diskette with mapping software and data sets is
also available, and its contents are explained more fully in Section 15.9 (Chapter 15).

Throughout the book, we present information that is displayed on the computer
screen in a special bold type face for your convenience. However, often we cannot
display an entire line as it will appear on the screen because we cannot fit all the
characters in one line of text. Therefore, you will notice that the display of the UCSD
Pascal system command line and subsystem option lines will often be displayed in two
lines. Sometimes, in displaying the text of a program, a similar problem occurs. When
we cannot fit an entire line of the program on a single line in the book, we break the line
at a convenient place and put the remaining text on the next line. In order to be able to
distinguish such second lines, we have right-justified them. We think you will adapt
easily to these two situations. You might want to reread this paragraph after you have
read four or five chapters of the text.

Preface

In the process of writing this book we have benefited from the assistance of a
number of people. We are glad to have an opportunity to express our gratitude to
William Teoh of the University of Alabama, Huntsvilie, and Evelyn Speiser of Glendale
Community College, who read the manuscript and offered numerous useful sugges-
tions; to Nancy G. Haigh, who read and reread drafts of the manuscript in order to
improve its clarity and style; to Betty O’Bryant of PWS, who orchestrated the various
design and production tasks that transform a manuscript intc a book and made it look
easy; and to Karin Hammann, who meticulously edited the copy. We are alsc happy to
acknowledge the assistance of Robert Holloway, University of Wisconsin; Phillip D.
Jackson, Appalachian Microsystems; Wiliam F. Ward, Indian River Community
College; and F. J. Lopez-Lopez, Southwestern College.

v

CONTENTS

1 THE LANGUAGE AND THE OPERATING

SYSTEM 1

1.1 Text Structure and Scope 1
1.2 Pascal as a Language 2
1.3 The Pascal System 3
1.4 Using the Pascal System: Guided Exercises 4q
1.5 Hierarchy in the Pascal System 20
Review 22

2 RUNNING SIMPLE PROGRAMS 25
2.1 Elements of a Complete Program 25
2.2 Entering a Program 27
2.3 Compiling a Program 31
2.4 Executing a Program 32
2.5 Changing a Program 34
2.6 Dealing with Errors 36
2.7 Debugging 40
2.8 A Word about Program Style 41
2.9 Saving a Program 41

Review 43

vii

viii

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4

Contents

PROGRAM DEVELOPMENT AND
PROBLEM SOLVING

Programming and Problem Solving

A Problem-Solving Model

The Nature of an Algorithm

llustrating Pseudocode

Coding the Algorithm

Completing the Job: Documentation

Review

FUNDAMENTALS OF DATA
MANIPULATION

Performing Operations upon Data

Storing Data in Memory: Variables and Constants
Arithmetic Operations with Numeric Constants
Mixed-Mode Expressions

Input/Qutput Procedures

Creating a Data Type

Pascal Identifiers

Syntax Diagrams

Review

Programming Exercises

LOOPS AND FILES

The Structured Statement
Defining a Data Set

Using Text Files for Data Sets
WHILE Loops in Pseudocode

45
45
46
47
49
56
60
65

67
67
68
71
75
79
83
84
85
88
92

94
94
95
96
97

5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4

7.5°

7.6
7.7
7.8
7.9
7.10

Relational Operators and Boolean Values
WHILE Loops in Pascal

Creating Text Files with Programs

Files That Contain Numeric Data

Review

Programming Exercises

CONDITIONAL STATEMENTS

Program Branching

Single Alternative Decision Structure
Double Alternative Decision Structure
Nested Decision Structures
Compound Boolean Expressions
Multiple Alternative Decision Structures
Review

Programming Exercises

LOOPS AND ARRAYS

Algorithms and Data

Loops in General

Syntax for Repeat Loops
Counters and Accumulators
indexed Loops

Using the Loop Index
Structured Data Types
Subscripts and Arrays
Using Arrays

Sorting with an Array

Contents

99
100
106
108
112
116

118
118
118
121
126
127
129
135
138

140
140
140
144
148
153
156
160
161
161
164

ix

7.11

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Contents

User-Defined Ordinal Types
Review
Programming Exercises

FUNCTIONS AND PROCEDURES

Modular Programs

Built-In Functions

User-Defined Procedures and Functions
Choosing between Functions and Procedures
A Template for Modular Programs

Designing a Modular Program

Random Numbers

Recursion

Review

Programming Exercises

ARRAYS AND SETS

More Data Structures
Elementary Statistical Measures Using Arrays
Using an Array as an Accumulator
Two-Dimensional Arrays

Matrix Operations

Order Exploding Using Arrays
Subrange Types

Sets

Set Operations

Review

Programming Exercises

167
171
173

176
176
177
181
190
193
197
200
205
212
215

218
218
218
226
228
230 °
233
236
237
241
244
246

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

PROCESSING CHARACTER DATA

The ASCIl Coding System

Character and String Data Types

Sets of Character Data

Base Conversions

Random Words

Strings

String Length

Using String and Character Data Together
Text File Input/Output Using Strings
Application: Word-Frequency Distribution
Converting Long Integers to Strings
Lower-Case Conversion

Other String Operations

Review

Programming Exercises

DATA STRUCTURES: RECORDS, FILES,

AND LINKED LISTS
Completing the Data Tree

The Record and the WITH Statement
Files in General

Designing a Record System

A New Variable Type: The Pointer
Constructing a Linked List
Modifying a Singly Linked List
Binary Trees

Review

Programming Exercises

Contents

248
248

249
250
253
255
256
257
258
259
262
273
274
275
277
279

282
282
283
285
285
295
296
301
304
311
313

Xi

xii Contents

12 INTRODUCTION TO TURTLEGRAPHICS 315
12.1 Turtlegraphics 315
12.2 The Graphics Screen 316
12.3 Drawing Simple Geometric Figures 320
12.4 Using Recursion to Produce Graphics Figures 328
12.5 Printing Graphic images 329
12.6 Controlling Printer Qutput 331
12.7 Plotting a Time Series 334

Review ' 339

Programming Exercises 340

13 BUILDING A LOGO TURTLEGRAPHICS

INTERPRETER 342
13.1 Introduction to LOGO 342
13.2 Turtlegraphics in LOGO 343
13.3 Creating a Turtlegraphics Interpreter 345
13.4 Parsing 349
13.5 Other TGl Subprocedures 352
13.6 Using the TGI Program 360

Review 361

Programming Exercises 362
14 MORE DATA MANIPULATION 264
14.1 Entry of Numerical Data 364
14.2 Output of Numerical Data 368
14.3 Producing X-Y Plots 372
14.4 Producing Bar Graphs 376
14.5 Producing Histograms 379

o Laid kR e g RS SAGE et

Contents xili

14.6 Fitting Data to a Straight Line 385
Review 390
Programming Exercises 391

15 MAKING MAPS AND MUSIC 392

15.1 Computer Mapping 392

15.2 Creating a Map Coordinates File 397

15.3 Finding the Midrange of the Coordinates 399

15.4 Drawing a Map 401

15.5 Printing Graphic Displays 405

15.6 Using the Apple to Make Music 406

156.7 Making Melodies 407

15.8 Making Harmonies 410

15.9 Map Resources 414
Review 416
Programming Exercises 417
APPENDICES 419

A Pascal Reserved Words 420
B Pascal Compiler Error Messages 422
C Library of Programs 427
D Word Processing 444
E ASCI Codes and Their Meaning 474
F Diagnosing Run-Time Errors 476
G Handling input/Output Errors within Programs 480

INDEX 483

1.1

THE LANGUAGE
AND THE OPERATING

SYSTEM

TEXT STRUCTURE AND SCOPE

This text provides an introduction to problem solving in the environment of the Apple
UCSD Pascal system. Our primary goal throughout the text is to help you develop both
problem-solving skills and proficiency in the Pascal programming language. it is
necessary, however, to spend some time discussing the Apple UCSD Pascal operating
system, hereafter called the Pascal system. The letters UCSD refer to the University of
California at San Diego, at which a popular dialect of Pascal was developed. This
dialect runs on a number of different computers. In this book, we will concentrate on the
Apple implementation of UCSD Pascal, although we hasten to point out that the Apple
version has quite a bit in common with other UCSD Pascal dialects.

The Pascal system acts as an interface between the computer and the user
(Figure 1.1). While we are communicating with the Pascal system, it in turn is
communicating with the computer on a more fundamental level. The Pascal system
responds to the user’s instructions in order to perform all the necessary housekeeping
tasks that are associated with the development and manipulation of programs.

People who have programmed in BASIC may find the details of a new language
and a complex operating system burdensome. In BASIC, the housekeeping tasks
(entering, editing, saving, listing, and running programs) are simple and are quickly
learned, and the user can concentrate on the language. With Apple Pascal, the
housekeeping tasks require more explicit attention, which fact may compiicate early
efforts to learn the language. We recognize this obstacle, and attempt to minimize your
frustration by providing in the early chapters step-by-step directions for performing the
essential tasks. You can obtain more details on the Apple UCSD Pascal system from

2

1.2

The Language and the Operating System

Figure 1.1
Relation of User to Computer

User | ——> Pascal System «—» | Computer

the Apple Pascal Operating System Reference Manual.* However, like other computer
manuals, this document assumes that you have considerable familiarity with the
system. We will introduce you to the essentials of the Pascal system as you need to
know them. After that, you may delve into the system manual for further guidance.
Our emphasis will be on writing well-structured programs in UCSD Pascal as
implemented on the Apple microcomputer. This implementation includes UCSD
Pascalt and certain extensions to the language that were developed by Apple. No
previous programming experience will be assumed. If you have already programmed,
you may need to give up some habits you developed while programming with other
languages. If you have never programmed, you are fortunate that your first experience

is with a structured language such as Pascal.
In this chapter, we assume that you are familiar with certain basic terms used in

computing, such as
Computer language
Program
Computer memory
Central processing unit (CPU)
Input/output (1/0) devices
File
Software

If you are not familiar with these terms, look up their definitions in the review section at
the end of this chapter. Additional computer terminology is defined as it is introduced in

each section.

PASCAL AS A LANGUAGE

The Pascal language was developed in 1968 by Professor Niklaus Wirth at the
Eidgenossische Technische Hochschule in Zurich, Switzerland. The official description

*Apple Pascal Operating System Reference Manual (Cupertino, Calif. Apple Computer Co.,

1980).
+UCSD PASCAL is a trademark of the Regents of the University of California.

Ch.

