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Introduction

Korovkin type approximation theorems typically deal with certain restricted classes of
continuous linear operators on locally convex vector spaces. These may be positive operators
on ordered vector spaces or contractions on normed spaces as in the seminal work by Korovkin
[29], [30], Shashkin [50], [51], Wulbert [63], Bauer [9], and Behrens and Lorentz [12]. Less
known situations include operators on Banach algebras [4], [39], [40] or on spaces of stochas-
tic processes [60], [61] with certain restricting properties. More recently, there are results about
order preserving linear operators on set-valued functions [59], [28], [13], [14] as well. In this
case the domain of the operators under consideration is no longer a vector space but only a
cone, i.e. subtraction of elements is not always defined (see also [44], [45]). Generally, if an
approximation process is modelled by such a restricted class of operators, those very re-
strictions guarantee convergence towards the identity on a large subset of their domain if this
property may be checked for a relatively small test set. Korovkin's classical theorem (see [29],
[30]) states that a sequence of positive linear operators on C[0,1] converges towards the iden-
tity for all functions in C[0,1] if this holds for the three "test functions" I, x and x2. Unfortu-
nately, the different situations mentioned above and the different restrictions on the classes of

operators so far required different approaches and techniques.

Looking for a unified presentation of Korovkin type approximation theorems we had to
leave the setting of vector spaces and turn to more general structures which we call locally con-
vex cones. For our purposes, it is essential to include cones which are not embeddable in vector
spaces. As we need to apply functional analytic concepts, in particular an appropriate duality
theory and Hahn-Banach type extension and separation theorems, we have to stay reasonably
close to the classical theory of locally convex vector spaces, yet allow sufficient generality in
order to serve our main purpose: Various restrictions on classes of operators in Korovkin type
approximation may be taken care of by the proper choice of domains and their topologies alone.
Thus, we just have to investigate continuous operators between locally convex cones. The fol-
lowing is an outline of the main concepts and some (simplified) results of this work.

Preordered cones. A cone is aset P endowed with an addition (@, b) — a+b and a scalar
multiplication (a,a) — oa for real numbers o 2 0. The addition is only supposed to be
associative and commutative, and a neutral element 0 is required to exist (see Ch.I.1).
Of course, cones in real vector spaces are cones in the above sense. They have the
cancellation property
a+c=b+c implies a=b
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which we do not require in general.

In addition we shall assume that P carries a preorder, i.e. a reflexive transitive relation

"<" such that
a<b implies a+c <b+c and ca< o forall ab,ceP andall a=0.

Locally convex cone topologies. Our model for introducing a locally convex topology
on P isthe set Conv(E) of all non-empty convex subsets of a locally convex topological
vector space E. It has a natural addition and a scalar multiplication by non-negative reals; it is
ordered by inclusion. An arbitrary base V C Conv(E) of convex neighborhoods of 0 in E
induces three hyperspace topologies on Conv(E) given by the respective neighborhood bases
for A € Conv(E):

in the upper topology V(A)= {BeConv(E)|BC A+V }, VeV,
in the lower topology (A)V= {BeConv(E)IACB+V}, VeV,
in the symmetric topology VAN AWV), VeV.

Identifying elements of E with singleton sets, E is naturally embedded in Conv(E), and all
the three topologies on Conv(E) coincide with the given locally convex topology on E.

For an abstract formulation we use order theoretical concepts to introduce locally convex
topologies on cones (see 1.2.2): A subset V of the cone P is called an (abstract)
0-neighborhood system, if the following properties hold:

O<v forall veV;

forall uyveV thereis weV with w<u and w<v;

u+veV and aveV whenever u,veV and a>0.

For every a e P we define

va)={bePlb<a+v}
to be a neighborhood of a in the upper topology, and

(@v={bePla<b+v}
to be a neighborhood of a in the lower topology. The common refinement of these two
topologies is called the symmetric topology on P. We call (P,V) a full locally convex cone.
We also consider subcones Q of P not necessarily containing V. They will be endowed
with the topologies induced from Q and denoted as locally convex cones (Q,V). They are
the general subject of our study.

Cones are asymmetric structures, so asymmetric conditions come as no surprise: For
technical reasons we require the elements of a locally convex cone to be bounded below, i.e.
forevery aeQ and veV we have 0< a+pv for some p > 0.

Note that the upper neighborhoods v(a) are decreasing convex sets and the (a)v are
increasing convex sets. The neighborhoods in the symmetric topology are both convex and or-
der convex. Thus, all of these three topologies merit to be called locally convex. Of course, the
upper and the lower topology are far from being Hausdorff. Since all of the three topologies are
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defined in terms of the preorder on Q, continuity properties etc. will be expressible by means
of the ordering and the 0-neighborhoods alone.

The global preorder (see 1.3.9). On a locally convex cone (Q,V) we define the global
preorder "<" for a,beQ by
a<hb ifandonlyif a<b+v forall veV.

It is easy to check that a < b for our original preorder always implies a < b. Further-
more, mappings between locally convex cones which are continuous either with respect to their
upper or their lower topologies need to be monotone with respect to their global preorders. This
is the main reason for the usefulness of locally convex cones in Korovkin type approximation

theory.
The following standard examples will be used throughout our text:

Examples. (a) Clearly every locally convex topological vector space E with 0-neighborhood
base V is a locally convex cone (E,V) in this sense. (E is a subcone of the full locally con-
vex cone (Conv(E),V).)

(b) The cone R = RU{+c0} may be endowed with the abstract neighborhood system
V= {eeR1€e>0}. For a eR theintervals (-eo,a+€) are the upper and the intervals
(a-€, +oo) the lower neighborhoods, while for @ =+ the entire cone R is the only upper
neighborhood, and {+c<} is open in the lower topology. The symmetric topology on R is the

usual topology on R with {+eo} as an isolated point.

(c) Let (E,<) be a locally convex ordered topological vector space with

0O-neighborhood base V. For a,beE, and VeV we define

a<b+V ifthereissome veV suchthat a <b+v.
Thus (E,V) is a locally convex cone and the symmetric topology on E coincides with the
original one if the neighborhoods V €V are order convex.

(d) If (Q,V) is a locally convex cone then there is a canonical way to define a locally
convex topology on the cone Conv(Q) of non-empty convex subsets of Q:

For convex sets A,B € Conv(Q) and a neighborhood v eV we set

A<B+v ifandonlyifforall a€A thereissome b €B suchthat a<b +v.
Thus (Conv(Q),|7) is a locally convex cone (we set V= {v1v eV}). It does not satisfy the
cancellation property.

Moreover, it may be shown that every locally convex cone satisfying a minor additional
assumption (see Theorem II1.2.20) admits a representation as a subcone of (Conv(E),V),
where (E,V) denotes a suitable locally convex topological vector space.

(e) If (Q,V) is alocally convex cone and X is a compact space by C(X,Q) we de-
note the cone of Q-valued functions on X which are continuous with respect to the symmetric
topology on Q. For fg eC(X,Q) and veV we set

f<g+v ifandonlyif f(x)<g(x)+v forall xeX.
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Thus, endowed with this topology of uniform convergence (C(X ,0),V) is a locally convex
cone as well.

(f) In the context of Korovkin type approximation theorems for linear contractions on
normed spaces the following locally convex cone is of interest: Let (E,ll ll) be a normed vector
space with unit ball B. Let Q = {a+pBla€E, p =0} be provided with the canonical
neighborhood basis V = {pB | p >0} and the set inclusion as preorder.

Uniformly continuous linear operators (see II.1.1 and II.1.2). For cones Q@ and P,
amap T:Q — P is called a linear operator, if
T(a+h) = T(@+T(b) forall a,beQ and
T(oa) = oT(a) forall ae@Q and a20.
If (Q,V) and (P,W) are locally convex cones then the linear operator
T:Q — P is called uniformly continuous or u-continuous for short, if for every w e W one
can find a veV such that
a<b+v implies T(a) <T(b)+w.
Uniform continuity is not just continuity. It is immediate from the definition that it im-
plies and combines continuity with respect to the upper, lower and symmetric topologies on Q
and P. Every u-continuous linear operator is monotone with respect to the global preorder. In
Example (f), for example, if we extend a given linear operator T on the normed space E to a
linear operator T on Q = {a+pBlaekE, p =20} by setting T(B) =B, then u-continuity is

equivalent for T to be contractive.

The dual cone (see I1.2). By the above a linear functional p:Q — R is u-continuous if
there is a neighborhood v € V such that

a<b+v implies p(a) < p(b)+1.
The u-continuous linear functionals on @ form again a cone, denoted by Q and called the

dual cone of Q. We endow Q* with the topology w(Q*,Q) of pointwise convergence of
the elements of Q, considered as functions on Q* with valuesin R with its usual topology.

The polar vg of a neighborhood v eV consists of all linear functionals fulfilling the above

condition. It is seen (I1.2.4) to be w(Q*,@)-compact and convex.
The following is derived using Hahn-Banach type theorems as in [22]:

Extension Theorem (11.2.9). Let P be a subcone of the locally convex cone (Q,V). Then
every u-continuous linear functional on P can be extended to a u-continuous linear functional
on Q; more precisely: For every Levg thereisa [i € v§ suchthat p= fijp.

Superharmonicity with respect to a subcone. Introducing the notation for an element
of a locally convex cone to be superharmonic with respect to a given subcone, in Chapter I1I we
turn to applications in approximation theory. This notion is well-known and useful in classical
Korovkin theory. It serves the same purpose in our more general setting:
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Let Qo be a subcone of the locally convex cone (Q,V). Let peQ* and aeQ. We shall
say that the element a is Qg-superharmonic in W (see II1.1.1) if firstly p(a) is finite and if
secondly, for all v € Q¥,
v(b) < u(b) forall beQp implies v(a) < p(a).
In order to give an example how classical results may be transferred to our more general
concept, recall the following well-known statement in the Cy(X)-case which is due to Bauer and
Donner [11]:

Theorem. Let X be a locally compact space and G a linear subspace of Cy(X), the space
of continuous real-valued functions on X vanishing at infinity. For a function fe€ Cy(X) the
following conditions are equivalent:
(i) For every net (To)o eca Of equicontinuous positive linear operators on Cy(X),
Ta(g) > g forall geG implies To(f) — f.
(ii) For every x€X we have
fx) = ESEE inf {g(x) | ge G, f<g+e} = ci£10f sup {g(x) | ge G, g <f+e}.

(iii) For every x € X and every bounded positive Radon measure | onX,
ng) =gx) forall geG implies n(f) = f(x).
Convergence in (i) is meant with respect to the topology of uniform convergence on Co(X).

Consider the locally convex cone (Cy(X),V) where V consists of the strictly positive constant
functions on X. The dual cone then is formed by the bounded positive Radon measures on X.
Clearly, condition (iii) in the preceding theorem means that both f and -f are G-superhar-
monic in all point evaluations of X. Thus, the equivalence of (ii) and (iii) is a consequence of

our

Sup-Inf-Theorem (II1.1.3). Let Q¢ be a subcone of the locally convex cone (Q,V). Let
aeQ and peQ" suchthat u(a) is finite. Then a is Qo-superharmonic in W if and only if
p(a) = sup inf{u(b) | b € Qo, a < b+v}.

veV

Like its classical counterpart this theorem may be used to derive Stone-Weierstraf3 type theo-
rems for locally convex cones (see I11.3.6 and II1.3.7).

In Chapter IV we turn to Korovkin type approximation theory in locally convex cones
and introduce techniques involving adjoint operators (see I1.2.15) on the dual cones. We use
the above notation of superharmonicity in order to derive our General Convergence Theorem
IV.1.13. For a net (ag)qea in a locally convex cone (Q,V) and an element @ € Q we shall
denote by aqTa the convergence of (ay) towards a with respect to the upper topology
(IV.1.7). We state a simplified version of this theorem which is however sufficient to derive
the classical results including the above by Bauer and Donner (c.f. [4], [11], [19], [20], [49],
[61], etc.):
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Convergence Theorem (IV.1.11). Let Q¢ be a subcone of the locally convex cone
(Q,V). Suppose that for all v eV the element a€Q is Qo-superharmonic in all elements of
the w(Q*,Q)-closure of the extreme points of v§. Then for every net (To)aeca of equicon-

tinuous linear operators on Q
To(b)Tb forall beQq implies Ty(a)Ta.

Our text is not meant to be a complete survey of Korovkin type approximation theory.
We do not repeat the classical cases in detail. They have been dealt with in many places and we
globally refer to Donner's book [19] on the subject and to the very useful bibliographies and
summaries by Altomare/Campiti [7] and Pannenberg [41]. We shall, however, in Chapter IV.2
give a few examples that may indicate how to apply our general results to various classical situ-
ations. Chapters V and VI are devoted to further applications of our General Convergence The-
orem, most of which are new. We consider cone-valued functions which generate locally con-
vex cones in various ways. In particular, we generalize the concept of Nachbin spaces (see V.1)
which is described in [43] and which formalizes the concept of weighted approximation. We
thus extend Korovkin type theorems to problems of weighted approximation far beyond those
by Gadzhiev in [23], [24]. To give an example of our new results we formulate a Korovkin
type theorem for set-valued functions (V.3.2 and V.3.4). For finite dimensional vector spaces,
X =[0,1] and M = (1, x, x2} it is due to Vitale [59]. A more general version for the finite
dimensional case is contained in [28]:

For a locally convex vector space E with neighborhood base V we denote by
CConv(E) the locally convex cone of all non empty compact convex subsets of E (c.f. Ex-
ample (d) from above). Finally, for a compact space X, C(X,CConv(E)) denotes the locally
convex cone of all continuous (with respect to the symmetric topology) CConv(E)-valued
functions. It is ordered by (pointwise) inclusion. We consider convergence with respect to the
symmetric topology on C(X,CConv(E)) (c.f. 4(e)); i.e. the net (fy)aea of functions in
C(X,CConv(E)) converges to fe C(X,CConv(E)) if and only if for all V eV there is
some 0 €A such that

fa (x) C f(x)+V and f(x) C fo(x)+V forall xeX and o = oy.

Recall that a Korovkin system for C(X) is a subset M of C(X) such that, for the lin-
ear subspace G spanned by M, every function in C(X) fulfills the equivalent conditions of the
Theorem quoted on page 5.

In a similar way we say that a subset M of C (X,CConv(E)) is a Korovkin system
for C(X,CConv(E)) if for every fe C(X,CConv(E)) and every net (Tg)oea Of

equicontinuous monotone linear operators on C(X,CConv(E))
To(g) > g forall geM, implies Tu(f) = f.
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Theorem. Let E be a locally convex vector space, X a compact space and M a Korovkin
system for C(X) consisting of positive functions. Let U be a subset of CConv(E) such
that 0 €U forall UeU and J{AUI|UeU, A20} =E. Then the set-valued functions
x=>g0)U : X>0, geM, UeU
together with the constant functions
x—>C :X—>Q0, CeCConv(E)
form a Korovkin system for C(X,CConv(E)).

Chapter VI investigates quantitative approximation theory using the full strength of our
General Convergence Theorem. We derive results on the order of convergence for Korovkin
type approximation processes on cone-valued functions. These situations include real- and set-
valued functions (see V1.4.3, VI.4.5 and VI1.4.6) and stochastic processes (VI.4.10). Most of

our results are either new or considerable generalizations of known ones.



Chapter I: Locally Convex Cones

In the first three sections of this chapter we present the basic definitions of ordered and
locally convex cones and their associated topologies. In Section 4 we discuss the question of
embeddability in locally convex vector spaces. Roughly speaking, we show that the subcone
By, of bounded elements (see 2.3) of a locally convex cone Q is embeddable in a canonical
way into a locally convex ordered vector space. In particular, if a locally convex cone happens
to be a vector space, then, endowed with its symmetric topology (see 2.2), itis a locally
convex vector space. Thus, our notion of local convexity reduces to the usual notion of local
convexity in the case of vector spaces.

In Section 5 we present an alternative approach for locally convex cones through quasi-
uniform structures. Indeed, we believe that this approach is the most appropriate and natural
one; its disadvantage is that (quasi)uniform structures are less appealing to our intuition. Quasi-
uniform structures had been introduced under the name of "semiuniform structures" by L.
Nachbin [34] as a common generalization of order and uniform structures. In vector spaces one
has a canonical uniform structure induced by any vector space topology, and we believe that
this uniformity is essential for all the basic facts of functional analysis. Thus, for ordered cones,
the appropriate locally convex structure should be defined in terms of quasiuniform structures
which carry the information both about order and topology.

1. Cones and preordered cones.
1.1 Cones. We define a cone to be a set P endowed with an addition (a,b) — a+b and a

scalar multiplication (o,a) — oa for real numbers o > 0. The addition is only supposed to

be associative and commutative and a neutral element Op (shortly 0 ) is required to exist, i.e.:

(a+b)+c = a+(b+c) for all a,b,c eP,
atb = b+a for all a,b eP,
O+a = a forall aeP.

For the scalar multiplication we require as usual:

aBa) = (af)a forall o, >0 and aeP,
(a+B)a = oa+Pa forall o, >0 and aeP,
ala+b) = oa+ab forall >0 and a,b eP,

l'a =a forall aeP.
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In this definition of a cone P, the scalar multiplication is only required to be defined for
real numbers o > 0. We may - and we shall do this in the sequel - extend the scalar
multiplication to o =0 by defining 0'a=0 forall a € P, and all of the above rules remain
valid. On the other hand, a0 =0 for all o> 0 is a consequence of these rules. Indeed, for
all aeP we have

a=a('a+0)=a+ a0,
whence o0 =0 by the unicity of the neutral element.

1.2 Subcones and faces. A subset Q of acone P is called a subcone if
a+tbeQ and ocaeQ forall a,be@Q and a20.

Note that every subcone of P contains 0. A face F isa subsetof P such that
a+beF implies abeF forall a,beP.

Of course, cones in real vector spaces are cones in the above sense. They have the
cancellation property

©) a+c = b+c implies a=b
for arbitrary elements a,b,c. Conversely, cones which satisfy the cancellation property are
embeddable in real vector spaces. It is important to note that cones in our sense are in general
far from being embeddable in vector spaces, as the addition is not supposed to be cancellative.

This is essential, as we want to include examples like the following:

1.3 Example. With its straightforward addition and multiplication with o 2> 0, the set
R =R U {+} is a cone.

1.4 Example: Cones of convex sets. Let P be a cone. A subset A of P is called
convex, if aa+(1-a)b € A, whenever abeA and 0 <o < 1.
We denote by Conv(P) the set of all non-empty convex subsets of P. With the addition and
scalar multiplication defined as usual by

A+B = {at+blaeAand beB} for A,B € Conv(P),

oA =f{oalaeA} forAeConv(P)and a20,

it is easily verified that Conv(P) is again a cone. Convexity is required to show that (a+f)A
equals 0A+BA: Clearly (o+B)A is a subset of aA+BA. To show the converse, consider an
arbitrary element ¢ € xA+PBA; it can be written ¢ = aa+Bb with a, b €A; as

e = py-Pg +-P—p s o n=peOinivial)
o+ o+
and as
o B .
——a +——b € A Dby the convexity of A,
o+p o+

we conclude that ¢ € (a+B)A.
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Note that every subcone Q of P is convex and satisfies @Q+Q = Q. In particular, the
non-empty convex subsets of a real vector space form a cone in our sense which is far from

being cancellative.

1.5 Example: Cones of cone-valued functions. Let P be a cone, X any a set. For
P-valued functions on X the addition and scalar multiplication may be defined pointwise. The
set F(X,P) of all such functions then is a cone in our sense. But again, the addition is in gen-
eral not cancellative, as it is notin P.

1.6 Preordered cones. A preordered cone is a cone P with a reflexive transitive relation <
such that

a<b implies a+c <b+c and ca<ob forall a,b,ceP andall a>0.
If <is in addition antisymmetric, i.e. < is a partial ordering, then P is called an ordered cone.

Examples of preordered cones are R with its usual order (Ex.1.3), the set Conv(P) of
non-empty convex subsets of a cone P ordered by inclusion (Ex 1.4) and if P is a pre-
ordered cone, the set of P-valued functions on a given set X endowed with the pointwise or-
dering (Ex. 1.5). Every cone P is preordered by its natural preorder defined by a < b if
a+c=b forsome c€P.

Convex sets in cones may look rather peculiar. For example in R all the two element
sets {a,+e=} are convex. This phenomenon is somehow remedied by considering only in-

creasing or decreasing sets, or more generally convex sets that are also order convex:

1.7 Example: Cones of decreasing convex sets. A subset a of a preordered cone is
called decreasing,if a€A and b <a for some beP imply b eA. Forasubset B of P
we denote by:
IB={aePla<b forsome beB},

the decreasing subset generated by B. In a dual way one defines the notion of an increasing
subset and TB, the increasing subset generated by B. It is easily verified, that !B and TB
both are convex, whenever B is convex. We denote by DConv(P) the set of all non-empty
decreasing convex subsets of P.

For a decreasing convex set A and o >0, the set oA is also decreasing and convex.
But A+B need not be decreasing, if A and B are. We therefore modify the addition on
DConv(P) and define

A®B = l(A+B) = {cePlc<a+b forsome acA, beB).
With this addition and the usual scalar multiplication DConv(P) becomes a cone ordered by
inclusion; the set {0} acts as the additive zero element. There is a natural map
a — l{a} of P into DConv(P),

which is order preserving. It is an embedding, i.e. injective, if and only if the preorder on P is



