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Dedication

To Batya, Rebecca (Becky) Miriam, Abraham Solomon (Solly), Annie
Sara Khaya, Leora, Arielle Bella, Aliza Rose, and Walter John

I think the history of science gives ample examples that pure
investigation has enormous benefit.... And lovely things turn up.

—James A. Van Allen, 1999

Many of today’s electrical devices (e.g., radios) can trace their
roots to the basic research conducted by Michael Faraday in 1831.
He discovered the principle of electromagnetic induction,
that is, the relationship between electricity and magnetism.

—http://www.Ibl.gov/Education/ELSI/Frames/research-
basic-history-f.html (accessed Oct. 2006)

Look on the streets of almost any city in the world, however, and
you will see people clutching tiny, pocket computers, better
known as mobile phones. Already, even basic handsets have
simple web-browsers, calculators and other computing func-
tions. Mobile phones are cheaper, simpler and more reliable than
PCs, and market forces — in particular, the combination of pre-
paid billing plans and microcredit schemes — are already putting
them into the hands of even the world’s poorest people. Initia-
tives to spread PCs in the developing world, in contrast, rely on
top-down funding from governments or aid agencies, rather than
bottom-up adoption by consumers.



vi Bm  Dedication

Merchants in Zambia use mobile phones for banking; farmers
in Senegal use them to monitor prices; health workers in South
Africa use them to update records while visiting patients. All
kinds of firms, from giants such as Google to start-ups such as
CellBazaar, are working to bring the full benefits of the web to
mobile phones. There is no question that the PC has democratised
computing and unleashed innovation; but it is the mobile phone
that now seems most likely to carry the dream of the “personal
computer” to its conclusion.

—The Economist, July 27, 2006
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Preface

Wireless communications is based on the launching, propagation, and
detection of electromagnetic waves usually at radio or microwave frequen-
cies. It has its roots in the middle of the 19th century when James Clerk
Maxwell formulated the basic laws of electromagnetism (viz., Maxwell’s
equations) and Heinrich Hertz demonstrated propagation of radio waves
across his laboratory. By the start of the 20th century, Guglielmo Marconi
had invented the wireless telegraph and sent signals across the Atlantic
Ocean using reflection off the ionosphere. Subsequent early embodiments
of wireless communication systems included wireless telephony, AM and
FM radio, shortwave radio, television broadcasting, and radar. Engineering
breakthroughs after World War 11, including launching artificial satellites,
the miniaturization of electronics, and the invention of electronic comput-
ers, led to new embodiments of wireless communication systems that have
revolutionized modern lifestyles and created dominant new industries.
These include cellular telephones, satellite TV beaming, satellite data trans-
mission, satellite telephones, and wireless networks of computers.

The present textbook presents descriptions of the salient features of
these modern wireless communication systems together with rigorous anal-
yses of the devices and physical mechanisms that constitute the physical
layers of these systems. Starting with a review of Maxwell’s equations, the
operation of antennas and antenna arrays is explained in sufficient detail
to allow for design calculations. Propagation of electromagnetic waves is
also explored, leading to useful descriptions of mean path loss through the
streets of a city or inside an office building. The principles of probability
theory are reviewed so that students will be able to calculate the margins
that must be allowed to account for statistical variation in path loss. The
physics of geostationary earth orbiting (GEO) satellites and low earth orbit-
ing (LEO) satellites are covered in sufficient detail to evaluate and make
first-order designs of satellite communications (SATCOM) systems.

Xix



xx M Preface

This textbook is the outgrowth of a course in the physics of wireless
communications that I have taught to electrical engineering seniors and
first-year graduate students at the University of Maryland for the past seven
years. I have also been invited by Tel Aviv University (TAU) to present an
accelerated version of the course to graduate students and working engineers
at wireless communication companies; I have presented such a course at
TAU on two occasions, in 2003 and 2004-2005. The course at the University
of Maryland is a senior elective course that is normally limited to 30 students,
but because of its popularity the class size was expanded to as many as
60 students. Problem sets have also been developed and are included; a
solutions manual is available for instructors.

Previous textbooks have tended to be of two types:

1. Those that stress systems and signal processing aspects of wireless
communications with relatively light treatment of antennas and
propagation

2. Those that stress antennas and propagation with little attention paid
to the details of modern communication systems

The present textbook aims to integrate the topical area of antennas and
propagation with consideration of its application to designing the physical
layer in modern communication systems. This textbook aims to provide the
following:

1. Historical treatment of wireless communications from Marconi’s
wireless telegraph to today’s multimedia wideband transmissions

2. Starting from Maxwell’s equations, analysis of antennas and propa-
gation as they relate to modern communication systems

Relevant treatments of noise and statistical analysis

Integration of electromagnetic analysis with complete descriptions
of the physical layer in the most important wireless systems, includ-
ing cellular/(PCS) personal communications services telephones,
wireless local area networks of computers, and GEO and LEO SATCOM

R M

Victor Granatstein
Silver Spring, Maryland
January 2007
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