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ABSTRACT

We present a modern approach to the classical problem
of Plateau based purely on differential geometric concepts.
We not only reprove the classical results of Douglas but
also develop a new geometric criterion on a given finite
system of disjoint Jordan curves in three-dimensional
Euclidean space which guarantees the existence of a minimal
surface of a prescribed genus having these curves as

boundary.

1980 Mathematics Subject Classification: 58El12, 53A10, 49F10.

Key words and phrases: Minimal surfaces, Plateau's problem.

Library of Congress Cataloging-in-Publication Data

Tomi, Friedrich.
Existence theorems for minimal surfaces of non-zero genus
spanning a contour/Friedrich Tomi and Anthony J. Tromba.

p. cm.—(Memoirs of the American Mathematical Society,
ISSN 0065-9266; no. 382)

“January 1988.”

Bibliography: p.

ISBN 0-8218-2445.7

1. Surfaces, Minimal. 2. Plateau’s problem. 3. Existence
theorems. I. Tromba, Anthony. II. Title. III. Series.
QA3.A57 no. 382 510s—dcl9 87-31849
[QA644) [516.3'63] CIP

iv



Table of Contents

InErodlctEiOoN === cceccccscsscoosncoceoceenseeeseensd 1
§1. On Teichmiiller Theory for Oriented Surfaces .... 8
§2. The Variational Problem = = .....cueeeeeacnnsns 31
§3. Compactness in the Moduli Space @ @ ...c.vceens 37
§4. The General Existence Theorem = .....ccen.. 49
§5. Application to Plateau's Problem in IR3 saes BT

iii



INTRODUCTION

In 1931 Jesse Douglas and, simultaneously, Tibor Rado
solved the famous problem of Plateau, namely that every
Jordan wire in IR™ bounds at least one disc type surface
of least area [4,28]. For his work Douglas received the
first Fields medal in 1936. By this time he had shown that
his methods would allow one to prove that there exist mi-
nimal surfaces of genus zero and connectivity k spanning
k Jordan curves F1,...,Fk in ®" provided that one
such surface exists having strictly less area than the in-
fimum of the areas of all disconnected genus zero surfaces
spanning F1""’Fk [6]. Somewhat later he announced and
published proofs of theorems giving similar sufficient
conditions which guarantee the existence of a minimal sur-
face of arbitrary genus spanning one or more wires in Eu-
clidean space [7,8,9]. The method of Douglas, being of
great historical significance deserves some description
and we shall begin with an analytical formulation of the
problem.

2 be the

Let T be a Jordan curve in R" and B ¢ R
closed unit disc. The classical problem of Plateau asks

that we minimize the area integral

A(u) = JVEG - F2 dxdy

Received by the editors February 3, 1987.



2 FRIEDRICH TOMI AND ANTHONY J.TROMBA

among all differentiable mappings u : B - R™ such that
(1) u: 3B ->T is a homeomorphism.

Here we have used the traditional abbreviations

n k n k n ki k
e= 1 328)% c=- 1 (d8)? - U
= k=1 °Y k=1 ¥

The Euler equations of this variational problem form a
system of non-linear partial differential equations ex-
pressing the condition that the surface u have mean cur-
vature zero, i.e. it is a minimal surface. One may, how-
ever, try to take advantage of the fact that the area in-
tegral is invariant under the diffeomorphism group of the
disc and to transform these equations into a particularly
simple form by using coordinate representations. Following
Riemann, WeierstraB, H.A.Schwarz, and Darboux one intro-

duces isothermal coordinates
(2) E=G , F=0

which in fact linearize the Euler equations of least area,

namely they reduce to Laplace$ equation
(3) Au = 0.

One is thus led to the definition of a classical disc type
minimal surface as a map u : B - R" which fulfills con-
ditions (2) and (3).

For unknotted curves Garnier [ 15] was able to prove the
existence of solutions of (2) and (3) subject to the boun-
dary condition (1) by function theoretic methods. The ge-

neral case evaded researches until the work of Douglas and
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Rado. They both use the direct method of the calculus of
the variations and thus obtain an area minimizing solution
while Garnier's solution might be unstable. In applying
the direct method one now replaces the complicated area

functional by the simpler Dirichlet integral D where
21
D(u) = EJ(E+G)dxdy
It is important to note that
A(u) < J[/Ededy < %J[(E+G)dxdy = D(u) .

and equality holds if and only if E=G, F=0. This and
the analogy with the length and energy functionals of geo-
desics [24] make it plausible that minima of D should be
minima of A. This is, in fact, the case. In his prize
winning paper Douglas, however, did not explicitly attempt
to find a minimum for Dirichlet's integral but for another
functional H which is now called the Douglas functional.
Using Poisson's integral formula for harmonic functions

Douglas obtained the expression

2m 2m 5
qH(u) =L | [ (u(cosa,sina) - u(cosB,sinB)) "y 4q
A é 0 4 sin2 %(a— B)

which equals D(u) 1if wu 1is harmonic. The replacement of
D(u) by H(u) transforms a variational problem involving
derivatives to one that does not, an important feature of
Douglas' existence proof. In the case of two contours F1
and F2 in H{l, where the domain of our mappings u 1is

an annulus, the functional H(u) is similar. However, in

the general case of surfaces of connectivity k and genus
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p>0, one is forced to take as parameter domain a Riemann
surface of genus p bounded by k circles; the construc-
tion of H(u) becomes not only less elementary, but from
the point of view of these authors incredibly complicated.
Douglas was able to accomplish this generalization by
making essential use of the theory of Abelian functions on
Riemann surfaces, the theory of theta functions defined on
their Jacobi varieties and their dependence on the moduli
of the underlying Riemann surfaces. Namely, in order to
obtain minimal surfaces through the minimization of D or
H it is necessary to minimize over all conformal classes
of Riemann surfaces. This was carried out by Douglas at a

1)

point in mathematical history when the structure of such
conformal classes was not understood. That Douglas's work
was a tour de force of classical function theory is an
understatement.

According to C.Reid's book "Courant" [29] Douglas gave
a lecture at N.Y.U. in 1936 which stimulated Courant's in-
terest in Plateau's problem and its generalizations to
higher topological structure. In the same year he gave a
new proof of Douglas's original 1931 result using Diri-
chlet's integral instead of the Douglas functional.Courant
felt that his approach was simpler and more general than
that of Douglas. There is no question that for the genus
zero case he was correct in this assertion. He was also
correct in pointing out that the use of Dirichlet's inte-
1)It is interesting to note that Teichmiiller's pioneering

work [32] was appearing at about the same time.



PLATEAU'S PROBLEM 5

gral permitted one to attack other boundary value problems
for minimal surfaces, a subject which has received a great
deal of current interest, cf. [19,27]. However, Courant,
in these authors' opinion remains vague on the higher ge-
nus case. A typical comment can be found in his paper [2]
where he states (p.78) "Higher topological structure does
not affect our reasoning". Courant's method of attack for
higher genus was later worked out by Shiffman [31]. In
both the case of Shiffman and Courant, their approach uses
the theory of conformal mappings in order to represent con-
formal classes of Riemann surfaces as slit domains in the
upper half plane. Variation of the conformal structure
could be achieved by varying the position of the slits. An
approach similar in spirit though different in detail was
recently undertaken by Jost [20]. He uses fundamental poly-
gons in the Poincaré upper half plane as normal domains.
Douglas, on the other hand did not need to refer to any
theorems in conformal mapping, a point which Courant often,
justifiably, mentions in his papers. The crux of all ap-
proaches mentioned so far, in the opinion of the authors,
lies in the fact that the dependence of the variational
functional from the underlying conformal structure is not
at all transparent, but only very implicit. This will not
be the case in the approach suggested in the present paper.
The purpose of our paper is twofold. First of all we
want to present a modern approach to the classical Plateau
problem in which all basic concepts and methods are of
purely differential geometric nature. The whole theory is

embedded in the framework of global analysis; minimal sur-
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faces appear as the critical points of a differentiable
functional on a differentiable manifold, derivatives can
be computed explicitly. This will allow us to apply direct-
ly methods and results from nonlinear functional analysis
like Sard's theorem, bifurcation theory, degree theory,
etc. This will be carried out in forthcoming papers.

As a second goal of our paper we want to give a suffi-
cient geometric-topological criterion on a system of Jor-
dan curves in If3guaranteeing the existence of a minimal
surface of prescribed topological type spanning these
curves. Part of this result was announced in [34]. This
criterion (Theorems 5.1 , 5.2) is of a completely different
nature than Douglas's.

Finally we wish to make some remarks on the relation of
the classical theory of Plateau's problem to the geometric
measure theory. This theory was mainly designed to attack
the higher dimensional form of Plateau's problem, a realm
inaccessible to the classical theory. But, admittedly also
in the classical case of two-dimensional furfaces in Eg
the geometric measure theory approach yields beautiful re-
sults which could not easily - if at all - be obtained
within the classical theory, like the following one: any
sufficiently smooth Jordan curve in ]R3 spans a differen-
tiably embedded (up to the boundary) minimal surface of
some (unknown) topological type [16]. Geometric measure
theory in the opinion of the authors is, however, not so
well suited for questions where one is interested in sur-
faces of a prescribed topological type. We are therefore

convinced that the classical theory continues to hold its
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place within the general theories of minimal surfaces.

The functional (Dirichlet's) whose critical points are
minimal surfaces of a given genus is a function of two va-
riables. One variable is a mapping u : M - Igl from a
Riemann surface M with boundary into Euclidian space and
the second is an equivalence class of conformal structures
on M. This class of conformal structures we take to be
Teichmiiller's moduli space, and we begin our first section

with a discussion of its construction.



§1. ON TEICHMULLER THEORY FOR ORIENTED SURFACES

In this section we follow the approach to Teichmiiller
theory as developed in [12,13,14]. We suppose that M is
a compact oriented surface without boundary of genus
greater than one. It is well known that there is a col-
lection of coordinate charts {Ui,wi}iE ¥ covering
M==UUi , with orientation preserving coordinate mappings
{wi}, ®; ¢ Ui -+ €, so that when defined @, °w;1 is holo-
morphic. Such a collection of {Ui,wi} is called a com-
plex structure which we denote by c¢. When we think of M
having a fixed complex structure c¢ we shall designate
this by writing the pair (M,c). However, a given M may
have many complex structures. For example, let f : M »
be a Cc* diffeomorphism. Then we can construct a new com-
plex structure f*c, the pull back of ¢ by £, consi-
dering the coordinate pairs {f—1(Ui),upi o £f}. Then

1 are also holomorphic and hence f*c is

(05 ° £) ol o £)”
indeed a complex structure, with f : (M,f*c) -» (M,c) a
holomorphic mapping. Riemann wanted to identify (M,c)
with (M,f*c) and thus (under this relation) to consider
equivalence classes of complex structures on a fixed M.
To be more precise let C = C(M) be the space of all
complex structures on M and D = D(M) the space of all

c” diffeomorphisms of M to itself. Then Riemann was in-

terested in the space of equivalence classes C/D = R(M),
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as described above. The space R(M) is the Riemann space
of moduli of M.

Riemann conjectured that R(M) is a 6(genus M) -6 di-
mensional space in the case genus M 1is greater than one.
The structure of the space (/D is not well understood
today. In 1939 Oswald Teichmiiller in a series of brilliant
papers [32] broke up the problem into two parts as follows.
Let Doczv be those diffeomorphisms which are isotopic to
the identity (i.e. homotopic through diffeomorphisms). De-
fine the Teichmiiller space T =T(M) to be the quotient

space (C/D The modular group [ of the surface M de-

0"
fined by T = D/DO is well known to be a discrete group.
Then R(M) = T/T'. We can attempt to attain an understan-
ding of R(M) by first understanding T(M) and then the
action of ' on T(M). It is this second question whose
answer is not yet at hand. Teichmiiller was able to put a
topology (in fact a metric) on T(M) and to show that
T(M) is homeomorphic to Euclidian space ®rOP6 |
p = genus(M).

In the next paragraphs we shall not employ any of the
ideas of Teichmiiller . We shall rather give an outline
of a description of Teichmiiller space based on the work
[121].

The space C is a bit difficult to "get one's hand on"
or much less to understand in a very concrete way. We shall

come to understand this space and the action of 0 on it

through a somewhat circuitous route.

Definition 1.1 An almost complex structure J on M is
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a C section of the (1,1) tensor bundle T:(M) over M,

such that J2 = -I, I the identity map.

More colloquially, for each x€M, J(x) 1is a linear
map of the tangent space TXM into itself such that
Jz(x) = =I(x) , I(x) : TXM;> the identity and with x-J(x)

c” smooth. We say that J 1is orientation preserving if

for each x, and for Xx € TxM non-zero, the pair

(XX,J(x)Xx) is a positively oriented basis for TxM.

We shall denote by A the space of all almost complex
structures. It is not difficult to see that given a c€¢(

we can associate a unique J € A. We do this as follows.

Let Vi = wi(Ui), (wi,Ui) a coordinate chart for c¢. De-
fine Ji(x) s TXM:) by
_ [0 1), -1
Ji(x) = desy g )¢

where (:% ;) : 1R2= is the canonical almost complex

structure on 1R" .

Ji(x) = Jj(x) if
0 1\, -1 [0 1), -1
de (—1 O)dwi = do5(1 o)

or if

av(’ g\dw_1 = (:% ;)

where | 1is a complex analytic mapping. Write ¢ = x + iy,

X = Xx(u,v) , vy = y(u,v). Then dy is represented by the

matrix ( ) which by the Cauchy Riemann equations is

e 1%
(M
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(3 ) (a -\ (
du Ju a -b a -b _ 1 a b
equat w0 (5 3 )- (3 7) mee (57 - 2. p2\-b 2)
ou du
1 (a —b)(O 1)<a b) - (o 1)
Thus —5—— _ _ = | _ and consequently
a2+b2 b a 10 b a 10

Ji(x) Jj(x). What this computation shows is simply that
each ¢ € ¢ induces a J € A by defining J(x) = Jj(x)

for any coordinate chart (uj,wj) € cC.

In two dimensions, as we shall see, the converse is also
true, but is a much deeper fact. That is, given a J € A
there is a unique c¢ € C which induces J in the above

described manner.

The diffeomorphism group 0 acts on A in a natural
way. For f € D define (f£*J) (x) = df_1Jf(x)df(x). It is
clear that £f*J € A if J € A and one easily sees that

in the correspondence ¢ ~» J that f*c ~ £*J. Thus the

map which sends c¢ ~ J 1is D-equivariant, a very impor-

tant fact.

We shall now introduce another space of objects into
the picture, the space of all c” Riemannian metrics M

on M.

Definition 1.2 The space M of c® Riemannian metrics

on M 1is the space of positive c” sections of the (0,2)

tensor bundle Tg(M).

Again, more colloquially if g € M, then for each x € M
g(x) 1is a positive definite symmetric bilinear form on
OO

TxM’ g(x) : TxM x TXM - R so that x -» g(x) is C . It

is easy to see that M is a Frechét manifold since M is
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open in the linear space 52 of all symmetric two tensors

on M (S, is defined in the same way as M except that

2
positive definiteness is not required).

Let P Dbe the space of all positive c” functions on
M and let M/P denote the quotient space; that is we
identify two metrics 9, and 95 if g1(x) =p(x)g2(x)
for all x, where p 1is a strictly positive c” function

on M. The following theorem is taken from [ 12].

Theorem 1.1 There is a bijective equivalence (in fact,

diffeomorphism) between A and M/P.

Proof. Given g € M there is a standard way to construct
a new, unique, non-degenerate alternating anti symmetric
bilinear form u (x) : TM x TM - IR such that if X_,Y
g X X x'"x
is an oriented basis for T_M po(x)(X_,Y.) > 0. u is
X g x'"x g

called the volume element determined by g and the orien-

tation of M.

Since g 1is also non-degenerate we can, for each x €M,

transform ug(x) into a linear map ¢(g) (x) : TXM:> via
the rule

g(x) (2(9) (X)X ,Y ) = —ug(x)(xx,Yx).
Let J(x) = ¢(g) (x). One then checks that J2(x) = =I(x)

and that J is an almost complex structure on M. Define
the map ¢ : M - A by g~ ¢(g). & is not bijective,

since one can easily see that ¢(p-g) = ¢(g) for p € P.
However, one can check that ¢ passes to a bijective map

from M/P to A. o



