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PREFACE

This book began as a series of lecture notes of the course
given by N.P. Bhatia at the Western Reserve University during the
Spring of 1965 and the lecture notes of the courses given by G.P. Szeg8
at the University of Milan during the year 1964 - 65 and at Case Institute
of Technology during the summer of 1965. These courses were meant for
different audiences, on one side graduate students in mathematics, and
on the other graduate students in systems theory and physics.

However in the process of developing these notes we have found a
number of other results of interest which we decided to include ( See 1.9,
2.7, 2.8, 2.11, 2.14, 3.3, 3.4, 3.5, 3.7, 3.8, 3.9 ). Therefore, this
monograph is of a dual nature involving both a systematic compilation of
known results in dynamical systems and differential equations and a
presentation of new Theorems and points of view. As a result, a certain
lack of organizational unity and overlapping are evident.

The reader should consider this monograph not as a polished, finished
product, but rather as a complete survey of the present state of the art
including many new open areas and new problems. Thus, we feel that
these notes fit the special aims of this Springer-Verlag series. We do
hope that this monograph will be appropriate for a one year graduate course
in Dynamical Systems.

This monograph is still devoted to a mixed audience so we have tried
to make the presentation of Chapter 1 (Dynamical Systems in Euclidean Space)
as simple as possible, using the most simple mathematical techniques and
proving in detail all statements, even those which may be obvious to more
mature readers. Chapter 2 (Dynamical Systems in Metric Spaces) is
more advanced.Chapter 3 has a mixed composition : Sections 3.1, 3.2, 3.6,

3.7 and 3.8 are quite elementary, while the remaining part of the chapter
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is advanced. In this latter part we mention many problems which are still
in an early developmental stage. A sizeable number of the results contained
in this monograph have never been published in book form before.

We would like to thak Prof. Walter Leighton of Western Reserve University,
Prof. Mihailo Mesarovié of Case Institute of Technology, and Prof. Monroe
Martin, Director of Institute for Fluid Dynamics and Applied Mathematics
of the University of Maryland, under whose sponscrship the authors had the
chance of writing this monograph. We wish to thank several students at our
universities, in particular, A. Cellina, P. Fallone, C. Sutti and G.Kramerich
for checking parts of the manuscript. We are also indebted to Prof.A.Strauss
and Prof. O. Hajek for many helpful suggestions and inspiring discussions
and to Prof. J. Yorke for allowing to present his new results in Sec. 3.4.

We wish also to express our appreciation to Mrs. Carol Smith of TECH - TYPE
Corp., who typed most of the manuscript.

The work of the first author has been supported by the National Science
Foundation under Grants NSF-GP-4921 and NSF - GP-7057, while the work
of the second author has been sponsored by the CNR, Comitato per la
Matematica, Gruppo N° 11, and by the National Foundation under Grant NSF-GP-
6114.

The authors

March 1967
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CHAPTER O
Notation , Terminology and Preliminary Lemmas

0.1 DNotation
T: topological space
X: metric space with metric o
E: real euclidean space of n-dimensions
EZ: the real euclidean plane
G: group
R: set of real numbers.
R : non-negative real numbers
R : non-positive real numbers
I: set of integers
I : set of non-negative integers
I : set of non-positive integers
In the sequel, when not otherwise stated, capital letters will denote
matrices and sets, small latin letters vector (motable exceptions t,s,k,v and w
which have been used to denote real numbers), small greek letters real numbers

(notable exception m, which denotes a mapping).

If x = (xl’ ""Xn) €E, ||x|| will denote the euclidean norm of x i.e.,
i 2,1/2
0.1.1 |1x]|| = (:ZLi x{)
while
0.1.2 |x| = max (lxi[, 1 = 1, s0esn0)

Given two points x,y€E p(x,y) will denote the euclidean distance

between x and y, 1i.e.,



. n
0.1.3 ; P (x,Y) =[ii x; - yy)

211/2

If M 1is a non-empty subset of X, x€X, and o > 0, then we

‘ write

0.1.4 p(x,M) = inf{p(x,y):y €M},

F0.1.5 S(M,0) = {x€X: p(x,M) < al,
0.1.6 S[M,a] = {x€X: p(x,M) < al,
0.1.7 HM,a) = {x€X: p(x,M) = a}.

SM,a), S[M,a], and H(M,a) will sometimes be referred to as the
open sphere, the closed sphere, and the spherical hypersurface (of radius o about
M).

The closure, boundary, complement, and interior of any set MCX is
denoted respectively by M, 3M, C(M), and 1(M).

If {xn} is any sequence such that 1im X =X, then this fact is simply

n > o
denoted by X, + X,

We shall frequently be concerned with transformations Q from X to 2X

(the set of all subsets of X). Given Q:X = ZX, and M CEX, we write

0.1.8 Q) =U{Q(x):x €M}.
where
0.1.9 U{Qx):x eM} = xLé(M {Qx)}

If {Qi}, i€I, is a family of transformations from X to 2% with T

as an index set, then



0.1.10 Q =Ulq:ie1}

denotes the transformation from X to ZX defined by
0.1.11 Q) = V{Q (x):1€1}.

Given two sets M,N<X, their difference is denoted by M\N. Given two maps
T, and T, with T ¢ 7T, we will denote the composition map.
Sometimes we will use the logic symbols 3 ,€,%, V¥ and = meaning '"there exists",
"belonging to", "such that", "for all" and "implies".
Sometimes the following simplified symbols will be used :

n n
2 &>
4
1]

=2
and ¢

UG : xemM) 2 UMX(X) .
X €



0.2 Terminology

0.2.1 DEFINITION
Given a compact set MC E, a continuous scalar function Vv = d(x),
defined in an open neighborhood N(M) of M is said to be positive (negative)

semidefinite for the set M in the open neighborhood N(M) f

o(x) =0 for all x€M
P(x) 20 (¢(x) £0) for all x €N(M) \ M

If N(M) = E, then the scalar function v = $(x) 1s said to be positive (megative)

semidefinite for the set M. If M= (0} and N(M) =E, then the scalar function

v = ¢(x) ie called positive (negative) semidefinite. If for the set M, a
function v = 9(x) defined in a neighborhood N(M) with ¢(x) =0 for x€M

is not semidefinite, we shall call it indefinite.

0.2.2 Remark
The definition (0.2.1) as well as the following definitions .2.4)
applies to a slightly larger class of sets than the compact sets, namely for the class

of closed sets with a compact vicinity; viz closed sets M , such that for some

B >0 the set S(M ,B)\ M 1is compact.

0.2.3 Example
If X is locally compact, then for sufficiently small & > 0, the set

C(S[x,8]) is a set with a compact vicinity.

0.2.4 DEFINITION
Given a compact set MCE, a continuous scalar function Vv = ¢(X),
defined in an open neighborhood N(M) of M <s said to be positive (negative)

definite for the set M 1in the neighborhood N(M) if it is




¢(x) =0 X €M

¢(x) >0 (¢(x) <0) forall x€NM \ M.

If N(M) = E, then the real-valued function v = 6(x) is said to be positive

(negative) definite for the set M. If M= {0} and N(M) =E, then the scalar

function ¢(x) is called positive (negative) definite.

. 0.2.5 DEFINITION

A scalar function o = a(u) <s called strictly inereasing if a(ul) >a(u2)

whenever Hy > Hgs and it is called increasing if a(ul) > a(uz) whenever Ny > My

0.2.6 DEFINITION
Given a scalar function v = ¢(x), if there exists an increasing function

o = a(n) such that

0.2.7 a(p) >+ ® as  u >+

and such that ¢(x) satisfies in E the inequality

0.2.8 a(p(M,x)) < |6(x) | " M a compact set

then the real-valued function v = ¢(x) 1is called radially unbounded for the set M.

0.2.9 DEFINITION
If M is closed set (not necessarily compact) and the function v = ¢(x)
satisfies the requirements of definition (0.2.1) (or 0.2.4) then o¢(x) s called

weakly semidefinite (or weakly definite) for the set M 1in the open set NM). If

further ¢(x) is defined in S(M,8) for some & > 0, and if there is a strictly

increasing function o(e),a(0) =0 , such that

0.2.10 alp (x,M) £ ¢(x), x €S (M,9),



holds, then ¢(x) <s called (positive) definite for the set M <in the neighborhood

S(M,d).

0.2.11 DEFINITION
If M is a closed set and in the neighborhood N(M) ®SM,a)) the

real-valued function v = ¢(x) satisfies the condition
0.2.12 [6Gx)] < B(p(M,x))

where B = B(u) s an increasing function, then the function v = ¢(x) is called

unt formly bounded for the set M in N(M).

0.2.13 DEFINITION
If MG E <s a closed set and there does not exist an n > 0 such that
the real-valued function v = ¢(x) <is at least weakly semidefinite for the set

M in the set S(M,N), then ®(x) will be called indefinite for the set M.

If MCE <is a closed set, a continuous real-valued function ¢(x) which
18 not at least weakly semidefinite for the set M in an open neighborhood N(M),

will be called indefinite for the set M 1in N(M) .

The properties of the scalar function v = ¢(x) can be investigated in two
different spaces: the (n + 1) dimensional Euclidean space (v,x) and the
n-dimensional Euclidean space (x). 1In this latter case one actually considers the

properties of the sets ¢(x) =k (- » <k <+ ),

0.2. 14  DEFINITION.
A set D of real numbers is called relatively dense if there

Zsa T > 0 such that

DIV (t - T, t +T) # ¢ for all t € R,



0.3 Preliminary Lemmas
We shall now state a few obvious properties of definite (or semidefinite)
functions both in the space (v,x) and in the space (x). We shall define in the

following corollaries properties of real-valued functions with respect to a compact

set. The statements are identical in the case of sets with a compact vicinity and
weaker when, instead of considering compact sets, one considers closed, non compact
sets. In particular, the statements concerning definite funcéions become statements
on weakly definite functions, as it must be obvious to the reader by comparing

definitions (0.2.1) and (0.2.4) with the definition (0.2.9).

0.3.1 LEMMA
A continuous scalar function v = ¢(x) 1is positive (negative) definite

for a compact set M if M <s the absolute minimum (maximum) of the function.

Qs 362 LEMMA

A continuous scalar function v = ¢(x),¢(x) = 0 for x €M, is at least
semidefinite for the compact set M <if and only if there does not exist in E
any hypersurface on which ¢(x) changes its sign and it is definite if there does not

exist any point ny such that ¢(y) = 0.

0.3.3 LEMMA

Necessary and sufficient condition for the continuous real-valued
function v = ¢(x) TO be positive definite for the compact set M in some open
neighborhood N(M) <is that there exists two strictly increasing, continuous functions

a = alp) and B =B(uw) such that

0.3.4 alp(M,x)) < ¢(x) < B(p(M,x)), a(0) = B(0) =0



Proof: The condition (0.3.4) is clearly sufficient. To see the necessity, define

a*(y) inf{¢(x):y < p(x,M) < 8},

and

B*(Y) sup{¢(x):p(x,M) < v},

where & > 0 is such that N(M) D S(M,8). Then indeed
* *
o (p(x,M)) < ¢(x) < B (p(x,M)) >

* %
and o (y) and B (y) are continuous.
* * * s
Notice that a (y) > 0, B (y) >0 for vy #0 and o (0) = g (0) =0,
% *
and the functions o (y), B (y) are increasing. Now, there exists strictly
increasing functions a(y) and B(y) defined over an interval 0 < Yy £ 68" < §,

<

such that

* %
a(y) s a (v) €8 (y) < B(Y)

and o(0) = B(0) = 0. For example, a(y) may be chosen as follows. Let

%
® (6') =n, n > 0. Then there is a sequence of points Yy > Yy > Yg > eeee > 0,
*
- n = &t :
Yo >0 as n »+ o, such that « (yn) P g and Y1 §'. Now define
) nlv, = v
aly) =

n+1l (a+ 1)(n+ 2)(yn - Yn—l)

for vy n=1,2, ‘e

n =Y 2 Ynt+1°

The existence of RB(y) may be demonstrated in the same way and (0.3.4) holds with

these a(y) and B(y). The theorem is proved.



CHAPTER 1
DYNAMICAL SYSTEMS IN A EUCLIDEAN SPACE
1.1 Definition of a continuous dynamical system.

1.1.1 DEFINITION
A transformation m:E x R + E is said to define a dynamical
system (E,R,m) (or continuous onngr; on E if it has the following
properties:
i) 7w(x,0) = x for all xé€E
L.1.2 ii) nm(r(x,t),s) = m(x,t + s) for all x ¢E and all
t,s €R.

iii) 1w Zs continuous

For every x€E the mapping m induces a continuous map

.t R+ E of R into E such that nx(t) = m(x,t). This mapping Ty

is called the motion through x.

For every t€R the mapping 1 induces a continuous map
nt : E~>E such that ﬂt(X) = m(x,t). The map nt is called transition

(or action).

1.1.3 THEOREM
The mapping = - defined by
ﬂ_t(X) = 1(x,-t)

is the inverse of the mapping b,

Proof. It must be proved that (ﬂt)_l = n—t. This can be easily shown by
applying to the point x €E the mapping nt, then to the image point of

x:y = m(x,t) the mapping ﬂ—t. The image point of y wunder this mapping:



10
z = n_t(y) must coincide with x. 1In fact, using axioms (i) and (ii)
we have
2= 1 C(n(x,t)) = m(n(x,£),-t) = n(xst-t) = 7(x,0) = x,
which proves the theorem.

1.1.4 THEOREM
The mapping it is q topologtcal transformation of E onto

itself.

Proof. The map 1Tt is an onto mapping. In fact, all points x €E are
image points of points w(x,-t) €EE. For the same reasons the map vt is one

to one. 1In fact the statement
T(x,t) = 1(y,t) = z X,¥,2€E t€R fixed
implies, by application of the inverse map 'rr_t, that
x =y = 1(z,~t)

which shows that n° is one to one.
Since, by the definition 1.1.1, n—t is obviously continuous the

theorem is proved.

As a consequence of this fact, it follows that the dynamical system
P
“His a one-parameter group of topological transformations, meaning by this
that for each value of t€R a topological transformation is defined and,
furthermore, the transformation Trt forms a group. We claim that the set

{nt}, t€R 1is a group with the group operation defined by

1:1:5 T m =T .



