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ABSTRACT
ANIONIC PERMEABILITY OF THE LIVER ER MEMBRANE
By

Ashutosh Tripathy

The ionic pathways present in the liver ER membrane are not known in
detail. Studies using ER-derived vesicles have shown that they are permeable
to Na* K*, choline* and CI- but less permeable to Ca** and Mg**. Though
highly permeable to K*, the liver ER membrane has been postulated to lack an
efficient ion conducting structure for K* like the K*, Na* channel in the
sarcoplasmic reticulum.

InsP3, an intracellular second me'ssenger can release Ca** from an
intracellular store of many types of cells and that store has been postulated to be
the ER. An InsP3-gated Ca** channel has been shown to exist in canine
cerebellar microsomes. But, the the identity of the store in liver tissue is unclear.
Though the liver rough ER-derived vesicles have been shown to release Ca*+
when challenged with InsP3, the InsP3- binding sites copurify not with the ER
marker, rather with the plasma membrane marker.

The present study was undertaken with the aim to look at the anionic,

Ca*+* and K* permeability pathways present in the ER membrane.



Direct current-voltage recording is a straightforward approach to delineate
the ionic pathways present in any membrane. But the membrane of an
intracellular organelle like the ER is not accessible to direct cellular patch
recording. So, we have fused the liver rough ER-derived vesicles with a planar
BLM and have made current-voltage measurements across the reconstituted
BLM. In our fusion protocols the vesicles could be readily fused with a BLM by
swelling them osmotically in chloride containing solutions.

Using the above experimental approach, We have found that the liver
rough ER-derived vesicles passess considerable anionic permeability. The
permeability to halides and other anions follows the sequence : SCN-> |- > Br >
Cl~ >> gluconate~, suggesting that the chloride channels have low field-strength
sites. It can be pharmacologically dissected to Zn**-sensitive and DIDS-
sensitive types. DIDS blocked the chloride permeability from the cytoplasmic
side of the ER. No InsP3-gated Ca** channels, rynodine-sensitive Ca*+

channels and K* channel were found in the liver rough ER membrane.
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INTRODUCTION

All cells contain an endoplasmic reticulum (ER). Though highly
convoluted, the ER membrane is thought to form a single continuous sheet,
enclosing a single sac. The ER plays a central role in the biosynthesis of
macromolecules used to construct ather cellular organelles. Lipids, proteins and
complex carbohydrates destined for transportation to the Golgi apparatus, to the
plasma membrane, to the lysosome, or to the cell exterior are all synthesized in
association with the ER. Two functionally distinct regions of the ER can be
easily identified in some cells: the rough ER and the smooth ER. The rough ER
is studded with ribosomes on the cytoplasmic side of the membrane. Numerous

morphelogical investigations have demonstrated rough ER and smooth ER to be

) A
B il
results in the conversion of both forms of ER nto sp nqles&rch can
be isolated as the microsomal fraction by diffprential %n‘ugﬁ

in direct physical continuity; rough ER is tho

process of cisternal "budding." Physical disr

Several permeation systems for ions and small solutes are present within
the reticulum structures of cells. Three transport proteins, T4, T2 and T3 are
required to enable glucose-6-phosphate, phosphate (and pyrophosphate), and
glucose to respectively cross the ER membrane (1). Other biologically relevant
solutes and ions that cross the ER membrane include D-glucose, L-glucose, L-
leucine, cholinet, K*, Na* and CI- (2). Meissner et al. (2) found that there are
two types of liver microsomes (designated as types A and B) with differing

permeabilities to glucose and other small molecules. About 70 percent of the

1
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microsomes (type A) are permeable to D-glucose, L-glucose, 2-deoxy-D-
glucose, D-mannose, D-mannitol, uridine, glycine, L-leucine, choline*, TRIS*,
Rb*, K¥, Na*, and CI~. All of the above solutes, except ClI-, pass with a
comparatively slow rate in the remaining 30 percent type B vesicles. Type A and
B vesicles are similar in that both are essentially impermeable to sucrose, yet
permeable to CI~. By making membrane potential measurements with a
fluorescent dye probe, Meissner et al. found that a significant fraction of ER
vesicles were more permeable to TRIS* than to Ca*+ or Mg**. They also made
another important observation that, despite their preferential permeability to K*,
a majority of liver microsomes lack an efficient ion-conducting structure for K¥,
such as the K*, Na* channel which renders above two-thirds of the SR vesicles
highly permeable to K*. Treatment with the anion transport inhibitor 4,4'-
diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) lowered the permeability of
type A vesicles to several uncharged and negatively charged solutes, including
D-glucose and gluconate~. Based on their results, they suggested that a large
fraction of liver microsomes is rendered permeable to various biologically
relevant solutes and ions, perhaps through the presence of one or more
channels with a maximum diameter of approximately 7-8 A° which select(s)
against solutes on the basis of their size and charge.

The role of ER in sequestering Ca** has been well recognized. Out of
the two major intracellular organelles-i.e., the mitochondria and the ER, now
there is general agreement, largely through the application of electron probe x-
ray microanalysis to fast frozen tissue, that mitochondria contain little Ca*+.
compatible with the regulation of mitochondrial enzymes but can sequester
massive amounts, should the cytosolic Ca** begin to rise and that, despite its
relatively small Ca**+-binding capacity, the ER looks the stronger candidate for a

high affinity physiologically relevant Ca** store (3). A Ca**-ATPase exists in
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the ER membrane. The rat liver microsomal Cat*-ATPase has been purified
(4). Its molecular weight is 107 kDa and antiserum raised against the 100 kDa
sarcoplasmic reticulum (SR) Cat*-ATPase cross-reacted with it. A major Ca**-
binding protein, calreticulin (analogous to calsequestrin), has been shown to be
present in the smooth muscle SR and liver ER (5). In this connection it should
be borne in mind that SR, a specialized derivative of ER has long been known to
be the intracellular Ca** store in skeletal and cardiac muscle.

The rise to prominence of the ER has brought new ideas about Ca**
mobilization and, together with studies on the SR, a clear picture is beginning to
emerge about the Ca** sequestration and release processes and their control in
these systems. A major step in this direction has been the discovery of inositol
1,4,5-trisphosphate (InsP3) as an intracellular second messenger (6) and its role
in releasing Ca** from the ER of many types of cells (7). An inositol lipid
located within the plasma membrane is the precursor used by the receptor
mechanism to release InsP3 to the cytosol, leaving 1,2-diacyl glycerol (DAG)
within the plane of the membrane. Conceptually, this theory became very
attractive, since, in one step, it provided a link between membrane receptors and
release of Catt from a major intracellular store. Consistent with its role as a
second messenger, the increase in the level of InsP3 was found to precede the
onset of Cat*-dependent events in blowfly salivary gland (8) and in neutrophils
(9). The transduction unit within the plasma membrane consists of three main
components: 1) a receptor that detects the incoming signal; 2) a G protein that
serves to couple the receptor to the third component; and 3) a
phosphodiesterase responsible for cleaving the lipid precursor.

Ca*+* is constantly cycling due to passive efflux and active influx across
the ER membrane, and all the available evidence points to InsP3 acting to

stimulate the passive efflux component while having no effect on the pump.



