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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes™ character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Chapter 1

Introduction and Survey of Results

Our original motivation for undertaking the work presented in this book* has been to
clarify the connections between the braid (group) statistics discovered in low-dimensional
quantum field theories and the associated unitary representations of the braid groups with
representations of the braid groups obtained from the representation theory of quantum
groups — such as Uy(g), with deformation parameter ¢ = g := exp(in/N), for some N =
3,4,.... Among quantum field theories with braid statistics there are two-dimensional,
chiral conformal field theories and three-dimensional gauge theories with a Chern-Simons
term in their action functional. These field theories play an important role in string
theory, in the theory of critical phenomena in statistical mechanics, and in a variety of

systems of condensed matter physics, such as quantum Hall systems.

An example of a field theory with braid statistics is a chiral sector of the two-
dimensional Wess-Zumino-Novikov-Witten model with group SU(2) at level k which is
closely related to the representation theory of 35u(2)i-Kac-Moody algebra, with k =
1,2,3,.... The braid statistics of chiral vertex operators in this theory can be understood
by analyzing the solutions of the Knizhnik-Zamolodchikov equations. Work of Drinfel’d
(4] has shown that, in the example of the SU(2)-WZNW model, there is a close connection

between solutions of the Knizhnik-Zamolodchikov equations and the representation theory

*This book is based on the Ph.D. thesis of T.K. and on results in [6, 11, 24, 28, 42, 61]



of Uy(sl;) if the level k is related to the deformation parameter ¢ by the equation ¢ =
exp(:w/(k + 2)), and k is not a rational number. For an extension of these results to the
negative rationals see [62]. Unfortunately, the SU(2)-WZNW model is a unitary quantum
field theory only for the values k = 1,2,3, - - -, not covered by the results of Drinfel’d. Our
goal was to understand the connections between the field theory and the quantum group
for the physically interesting case of positive integer levels. (This motivates much of our

analysis in Chapters 2 through 7.)

The notion of symmetry adequate to describe the structure of superselection sectors
in quantum field theories with braid statistics turns out to be quite radically different
from the notion of symmetry that is used to describe the structure of superselection
sectors in higher dimensional quantum field theories with permutation (group) statistics,
(i.e., Fermi-Dirac or Bose-Einstein statistics). While in the latter case compact groups
and their representation theory provide the correct notion of symmetry, the situation
is less clear for quantum field theories with braid statistics. One conjecture has been
that quantum groups, i.e., quasi-triangular (quasi-)Hopf algebras, might provide a useful

notion of symmetry (or of “quantized symmetry”) describing the main structural features

of quantum field theories with braid statistics. It became clear, fairly soon, that the
quantum groups which might appear in unitary quantum field theories have a deformation
parameter q equal to a root of unity and are therefore not semi-simple. This circumstance
is the source of a variety of mathematical difficulties which had to be overcome. Work
on these aspects started in 1989, and useful results, eventually leading to the material in
Chapters 4, 5 and 6, devoted to the representation theory of U,(g), ¢ a root of unity, and
to the so-called vertex-SOS transformation, were obtained in the diploma thesis of T.K.;
see [6]. Our idea was to combine such results with the general theory of braid statistics
in low-dimensional quantum field theories, in order to develop an adequate concept of

“quantized symmetries” in such theories; see Chapter 7, Sects. 7.1 and 7.2.

In the course of our work, we encountered a variety of mathematical subtleties and
difficulties which led us to study certain abstract algebraic structures — a class of (not

necessarily Tannakian) tensor categories — which we call quantum categories. Work of




Doplicher and Roberts [29] and of Deligne [56] and lectures at the 1991 Borel seminar in

Bern played an important role in guiding us towards the right concepts.

These concepts and the results on quantum categories presented in this volume,

see also [61], are of some intrinsic mathematical interest, independent of their origin in

problems of quantum field theory. Although problems in theoretical physics triggered our
investigations, and in spite of the fact that in Chapters 2, 3 and 7, Sects. 7.1 through 7.4
we often use a language coming from local quantum theory (in the algebraic formulation
of Haag and collaborators [17, 18, 19, 20]), all results and proofs in this volume (after

Chapter 2) can be understood in a sense of pure mathematics: They can be read without

knowledge of local quantum theory going beyond some expressions introduced in Chapters

2 and 3, and they are mathematically rigorous.

In order to dispel possible hesitations and worries among readers, who are pure
mathematicians, we now sketch some of the physical background underlying our work,
thereby introducing some elements of the language of algebraic quantum theory in a

non-technical way. For additional details the reader may glance through Chapter 2.

For quantum field theories on a space-time of dimension four (or higher) the con-

cept of a global gauge group, or symmetry G is, roughly speaking, the following one: The

Hilbert space H of physical states of such a theory carries a (highly reducible) unitary
representation of the group G. Among the densely defined operators on H there are the
so-called local field operators which transform covariantly under the adjoint action of the
group G. The fixed point algebra, with respect to this group action in the total field alge-
bra, is the algebra of observables. This algebra, denoted by A, is a C*-algebra obtained

as an inductive limit of a net of von Neumann algebras .A(O) of observables localized in
bounded open regions O of space-time. The von Neumann algebras A(Q) are isomorphic
to the unique hyperfinite factor of type III;, in all examples of algebraic field theories that
one understands reasonably well. The Hilbert space H decomposes into a direct sum of

orthogonal subspaces, called superselection sectors, carrying inequivalent representations

of the observable algebra .A. All these representations of .4 can be generated by composing

a standard representation, the so-called vacuum representation, with *endomorphisms of




A. Each superselection sector also carries a representation of the global gauge group G
which is equivalent to a mulitple of a distinct irreducible representation of G. As shown
by Doplicher, Haag and Roberts (DHR) [19], one can introduce a notion of tensor prod-
uct, or “composition”, of superselection sectors with properties analogous to those of the
tensor product of representations of a compact group. The composition of superselection
sectors can be defined even if one does not know the global gauge group G of the theory,
yet. From the properties of the composition of superselection sectors, in particular from
the fusion rules of this composition and from the statistics of superselection sectors, i.e.,
from certain representations of the permutation groups canonically associated with su-
perselection sectors, one can reconstruct important data of the global gauge group G. In
particular, one can find its character table and its 6-5 symbols. As proven by Doplicher
and Roberts [29], those data are sufficient to reconstruct G. The representation category
of G turns out to reproduce all properties of the composition of superselection sectors,
and one is able to reconstruct the algebra of local field operators from these data. One

says that the group G is dual to the quantum theory described by A and H.

The results of Doplicher and Roberts can be viewed as the answer to a purely mathe-

matical duality problem (see also [56]): The fusion rules and the 6-j symbols obtained

from the composition of superselection sectors are nothing but the structure constants of
a symmetric tensor category with C* structure. The problem is how to reconstruct from
such an abstract category a compact group whose representation category is isomorphic
to the given tensor category. It is an old result of Tannaka and Krein that it is always
possible to reconstruct a compact group from a symmetric tensor category if the category
is Tannakian, i.e., if we know the dimensions of the representation spaces and the Clebsch-
Gordan matrices, or 3-;7 symbols, which form the basic morphism spaces. The results of
Doplicher and Roberts represent a vast generalization of the Tannaka-Krein results, since

the dimensions and Clebsch-Gordan matrices are not known a priori.

Another duality theorem related to the one of Doplicher and Roberts is due to
Deligne [56] which requires integrality of certain dimensions but no C* structure on the

symmetric tensor category. (It enables one to reconstruct algebraic groups from certain



symmetric tensor categories.) Disregarding some subtleties in the hypotheses of these
duality theorems, they teach us that it is equivalent to talk about compact groups or

certain symmetric tensor categories.

Quantum field theories in two and three space-time dimensions can also be formu-
lated within the formalism of algebraic quantum theory of DHR, involving an algebra A
of observables and superselection sectors carrying representations of .4 which are compo-
sitions of a standard representation with *endomorphisms of 4. This structure enables us
to extract an abstract tensor category described in terms of an algebra of fusion rules and
6-7 symbols. Contrary to the categories obtained from quantum field theories in four or
more space-time dimensions, the tensor categories associated with quantum field theories
in two and three space-time dimensions are, in general, not symmetric but only braided.
Therefore, they cannot be representation categories of cocommutative algebras, like group
algebras. In many physically interesting examples of field theories, these categories are

not even Tannakian and, therefore, cannot be identified, naively, with the representation

category of a Hopf algebra or a quantum group; see [61]. The. complications coming from

these features motivate many of our results in Chapters 6 through 8.

The following models of two- and three-dimensional quantum field theories yield

non-Tannakian categories:

(1) Minimal conformal models [7] and Wess-Zumino-Novikov-Witten models [8]

in two space-time dimensions .

The basic feature of these models is that they exhibit infinite-dimensional symme-
tries. The example of the SU(n)-WZW model can be understood as a Lagrangian
field theory with action functional given by

5(9) = 1 Jsrtr ((97'0u9)(9710%g)) d’z
+ 24 Jor tr ((57d9)),
where, classically, a field configuration g is a map from the two-sphere S? to the

group G = SU(n), and § is an arbitrary extension of g from S? = dB? to the ball

B3; (such an extension always exists, since 7, of a group is trivial). The second term

5



in S(g) is the so-called Wess-Zumino term which is defined only mod kZ. Classi-
cally, the theory exhibits a symmetry which is the product of two loop groups, for
right- and left movers, respectively. For k = 1,2,3, ..., the quantum theory associ-
ated with S(g) has conserved currents generating two commuting 3u(n)-Kac-Moody
algebras at level k, whose universal enveloping algebras contain Virasoro algebras;
(Sugawara construction). From the representation theory of the infinite-dimensional
Lie algebras of symmetry generators in these models, i.e., the representation the-
ory of Virasoro- or Kac-Moody algebras, one can construct algebras of so-called

chiral vertex operators which play the role of Clebsch-Gordan operators of (a semi-

simple quotient of) the representation category of the Virasoro- or Kac-Moody al-
gebra. Local conformally covariant field operators are then constructed by taking
linear combinations of products of two such chiral vertex operators, a holomorphic

one (left movers) and an anti-holomorphic one (right movers).

Of interest in relation to the main subject of our work is that the algebras of chiral
vertex operators, the holomorphic ones, say, appearing in these models provide
us with categorial data corresponding to non-Tannakian braided tensor categories.
(This can be understood by studying the multi-valuedness properties and operator
product expansions of chiral vertex operators. A very thorough analysis of the
SU(2)-WZW model can be found in the papers of Tsuchiya and Kanie and of
Kohno quoted in [9]; see also [8, 61].)

Zamolodchikov and others have studied “non-critical perturbations” of minimal con-
formal models which are integrable field theories [10]. Their results suggest that
there are plenty of massive quantum field theories in two space-time dimensions
with fields exhibiting non-abelian braid statistics, as originally described in [11].
(A perturbation of minimal conformal models giving rise to massive integrable field
theories is obtained from the ¢(;3)-field; a field with braid statistics is the field
obtained from a chiral factor of the ¢(s,)-field, after the perturbation has been
turned on [12].) To such non-conformal field theories one can also associate certain
braided tensor cztegories. However, the general theory of superselection sectors in

two-dimensional, massive quantum field theories leads to algebraic structures more



(2)

general than braided tensor categories, including ones with non-abelian fusion rule
algebras. A general understanding of these structures has not been accomplished,

yet.

Three-dimensional Chern-Simons gauge theory, (13, 14, 15] .

Consider a gauge theory in three space-time dimensions with a simply connected,
compact gauge group G £ sy (n). Let A denote the gauge field (vector potential)
with values in ¢ = Lie(G), the Lie algebra of the gauge group G, and let 3 be a
matter field, e.g. a two-component spinor field in the fundamental representation of
G. There may be further matter fields, such as Higgs fields. The action functional
of the theory is given by

S[A,%,9] “F g7 [tr (F?)d vol.
— L ftr(ANdA+2ANANA) (1.1)
+ A P(Pa+m)pdvol. +---,

where g, A and m are positive constants, and [ is an integer.

This class of gauge theories has been studied in [13, 14, 15]. Although the results in
these papers are not mathematically rigorous, the main properties of these theories

are believed to be as follows:

The gluon is massive, and there is no confinement of colour. Interactions persist-
ing over arbitrarily large distances are purely topological and are, asymptotically,
described by a pure Chern-Simons theory. Thus the statistics of coloured particles
in Chern-Simons gauge theory is believed to be the same as the statistics of static
colour sources in a pure Chern-Simons theory which is known explicitly [16]. The
statistics of coloured asymptotic particles can be studied by analyzing the statis-

tics of fields creating coloured states from the vacuum sector. Such fields are the

Mandelstam string operators, ¥, (7:), which are defined, heuristically, by

bal1e) = “T NP (exp [ ALK (12)

where a and 3 are group indices; v, is a path contained in a space-like surface,

starting at z and reaching out to infinity, N is some normal ordering prescription,

7



and P denotes path ordering. (Similarly, conjugate Mandelstam strings a(7.) are
defined.)

For the field theories described in (1) and (2), one observes that when the group G is
SU(2) the combinatorial data of a braided tensor category, an algebra of fusion rules and
6-7 symbols (braid- and fusion matrices), can be reconstructed from these field theories
which is isomorphic to a braided tensor category that is obtained from the representation

theory of the quantum group U,(sl;), where
q=e_%) k=1)2)3)"')

(with k = 1 4 const.). These categories are manifestly non-Tannakian. This is the reason
why it is not possible to reconstruct field operators transforming covariantly under some
representation of Uy(sl;) on the Hilbert space of physical states of those theories. However,
passing to a quotient of the representation category of Uy(sl;), ¢ = exp(ir/(k + 2)),
described in Chapters 6 and 7, we can construct a semi-simple, non-Tannakian, braided
tensor category describing the composition and braid statistics of superselection sectors
in these quantum field theories. In this sense, U,(sl;) is the “quantized symmetry” dual

to the quantum field theories described above. (For precise details see Chapter 7.)

The strategy used to prove this duality is to compare the fusion rules and the 6-j5
symbols of U,(sl;) with the corresponding data of the field theories found, e.g., in [9], and
to show that they coincide. More precisely, it is quite easy to show that the representations
of the braid groups associated with tensor products of the fundamental representation of
U,(sl3) coincide with those associated with arbitrary compositions of the “fundamental
superselection sector” of the corresponding field theories. One implication of our work
is that, in fact, the entire braided tensor categories coincide. This result follows from a
much more general uniqueness theorem stating that whenever a braided tensor category

with C* structure is generated by arbitrary tensor products of a selfconjugate object, p,

whose tensor square decomposes into two irreducible objects, i.e.,

pOp =10, (1.3)



(where 1 isthe neutral object, corresponding to the trivial representation of Uy(sl,), to
the vacuum sector of the field theory, respectively), and a certain invariant associated with
p, the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic
to the semi-simple subquotient of the representation category of Uy(sl;), for ¢ = + ei'-‘._:!,

k=1,2,3,....

The abstract nature of eq. (1.3) suggests that this result applies to a class of local
quantum field theories more general than the models described above. This observation
and the fact that those models are not rigorously understood in every respect led us to
work within the general framework of algebraic field theory. In this framework, p and 3
can be interpreted as irreducible *endomorphisms of the observable algebra A, with 1 the

identity endomorphisms of A, and eq. (1.3) for a selfconjugate object p of a braided tensor

category with C* structure is equivalent to some bounds on a scalar invariant associated

with p, its statistical dimension, d(p); namely (1.3) is equivalent to

1 < d(p) < 2. (1.4)

The main result of this book is a complete classification of braided tensor categories
with C*-structure that are generated by a not necessarily selfconjugate, irreducible object
p whose statistical dimension, d(p), satisfies (1.4). This is the solution to a very limited
generalization of the duality problem for groups. Our method of classification is unlikely to
be efficient for much larger values of d(p) than those specified in eq. (1.4) — except, perhaps,
for certain families of examples connected with more general quantum groups. However,
our solution to the problem corresponding to the bounds on d(p) in eq. (1.4) might serve

as a guide for more general attempts. In particular, our notions of product category and

induced category might be useful in a general context.

The constructive part of our classification consists in the description of two families
of categories: First, we need to understand the representation theory and tensor-product
decompositions of Uy(sl;), with g a root of unity; (Chapters 4 and 5, and [6]). This will
permit us to construct a non-Tannakian, braided tensor category by passing to the semi-

simple quotient of the representation category of U,(sl;); (vertex-SOS transformation; see

9



